
HPC Programming
Debugging, Part I

Peter-Bernd Otte, 15.1.2019

Debugging

1. Introduction / General Debugging
2. Typical bugs
3. Tools Overview
4. Introduction TotalView
5. Debugging with TotalView OpenMP
6. Debugging with TotalView MPI

Definition of a bug

• “bug” := errors or glitches in a program
à incorrect result.

• most difficult part of debugging: finding the bug.
Once found, correcting is relatively easy
• prove: bug bounty programs
• debuggers: help programmers locate bugs by:

executing code line by line, watching variable values
• locating bugs is something of an art:

• why? a bug in one section of a program cause
failures in a completely different section

• there is no defined right way to debug 1946, moth removed from relay

What’s it all about

• humans write high level code, e.g. in C
• hardware understands assembler

• error during execution? à today’s topic

compiler
& linker

todays lecture topics

• Today we concentrate on following classes of bugs:

• Arithmetic

• Logic

• resource

• Next lessons:

• Multi-threading in OpenMP and multi-processing in MPI

• Deadlock, Race condition, concurrency errors

• We concentrate on run-time and logical errors,

no syntax or semantic (à compiler) nor linker errors.

Call stack

• LIFO (last in, first out)
• Call stack = stack of “stack frames”
• Function call à new stack frame. Removed when

call ends
• “stack frame”:

• Local variables (in example: “c”)
• Argument parameters (in example: “a, b”)
• Return address (in example: “1st line in main()”)
• Saved copies of registers modified by subprograms

which might get restored (in example: none)
• Has Frame Pointer (FP)

int myfunc(int a, int b) {
int c;
//do some calculation
return;

}
int main () {

myfunc(a,b);
}

Program counter and Stack pointer

• Program Counter (PC):
• Hardware register in processor, indicating the actual point in program sequence.
• Stack Frame includes a return address
à PC can be reset at end of called subfunction

• Stack pointer:
• Address register, that points to the top of the call stack

Function0()

Function1()

Function2()Stack pointer

Debugging

1. Introduction / General Debugging

2. Typical bugs

3. Tools Overview

4. Introduction TotalView

5. Debugging with TotalView OpenMP

6. Debugging with TotalView MPI

let’s focus on

the

problems…

Common bugs in C

• Arithmetic
• div 0, over- or underflow, loss of precision

• Logic
• infinite loops, infinite recursion, off-by-one error

• Resource
• null pointer dereference, uninitialized variable, wrong data type, access violations and use-after-free

error, resource leaks, buffer overflow

• Few examples to warm up…

uninitialized memory

double d;
switch (i) {

case 0: d = 1; break;
case 1: d = 2; break;

}
printf(“value of d: %f”, d);
• value of d is for most cases arbitrary and depends on what is stored in memory before program

launched.
• “safety initialisation” recommended.

value outside the domain

int x, y, z;
//some calculation
if ((x+y) < z)

return 1;
else

return 0;
• what is the result for x=y=z=2E9?
• (x+y) outside of int range à overflow à gets negative.

buffer overflow

main () {
char comment[100];
int *myPhDResult;
char sqlCommand[200] = “SELECT comments FROM users”;
gets(comment);
//SQLExeceute(sqlCommand);
printf(“My PhD Result: %i“, myPhDResult);

}
• Any code which puts data in some buffer without checks à possible buffer overflow
• when size(entered value) > size(comment)+1 à adjacent memory gets overwritten
• No reliable error message during compilation or runtime! à debugger with memory checks helps

comment myPhDResult sqlCommand

Arithmetic exceptions

• divide by zero (misnormer: “floating point exceptions” do cover int arithmetic errors too)
• off by one: starting a loop at 1 instead of 0, writing <= instead of <, etc…

Syntactically correct “errors”

single statement not in loop:
for (int i=0; i<10; i++); x++;

Using a single equal sign to check equality:
char x=‘y’;
while (x=‘y’) { //Assigns ‘y’ to x, tests if x is zero

printf(“continue? ”); gets(y);
}

• syntactically correct, but most likely different programmer intention
• stick to code formatting rules

Memory leaks I

• frequent in C, no automatic garbage collection (check new techniques like smart pointer in
C++11)

• more memory gets allocated during runtime (and halts when all eaten up)

for (;;) {
char *out = (char*) malloc (size);
/*do some stuff
and forget to free out*/

}

Memory leaks II

• Overstepping array boundaries

int array[10];

int myPhDResult;

for (int i=1; i<=10; i++)

printf(“%d ”, array[i]);

• No hint or halt during runtime

• Only a memory checker finds this error.

array[0..9] myPhDResult

return temporary value

char *myfunc() {
char ch;
//so some stuff
return (&ch);

}
• local variable address from stack is returned
• solution: declare the variable as public before calling myfunc()

free the already freed resource

int myfunc(int global) {
char *str = (char*) malloc(42);
if (global ==0) free(str);
//Some more statements, including some malloc like
char *str2 = (char*) malloc(20);
free(str);

}
• free the already freed resource, but str still points to the old address
• affects by chance the newly allocated variable

NULL dereferencing

char *c; //might be NULL
if (x>0) c=‘h’;
printf(“The character c is: %c“, *c);

• if c is NULL à dereferencing fails
• when dereferencing an object, makes sure it initialised in any path.

Aliasing

char str[42] = “Test Str”;

char *str2 = &str;

strcat(str, str2);

• we may get an runtime error

• (strcat is no safe function, buffer overflow when 2nd argument > 1st)

• Aliasing creates problems when different addresses are expected. à try to avoid

• functions which expect parameters to be in certain format à be cautious!

Deadlocks, Race condition

• see lectures from OpenMP and MPI
• Deadlock: cyclic list, all threads proceed when receive OK from predecessor

• Race Condition: multiple threads, shared resources, result depends on scheduler

• Debugging OpenMP and MPI à next lecture.

rank 0 rank 1 rank 2 rank 3

How to avoid bugs

• Switch on compiler warnings! … and pay attention to them
• Use of simpler methods

• Split larger methods into small, cohesive ones!
• Intuitive idea of what’s being done
• few parameters only

• Mixing up various operations in a single expression à confusion
• Split complicated expressions!
• Make it easy for the debugger

if ((42.*b/c++) > (43.+(10.*e/f))) {
/*do some operation A*/

} else {
/*do some operation B*/

}

double a = 42. * b / c++;
double d = 43. + (10. * e / f);
if (a > d) {

/*do some operation A*/
} else {

/*do some operation B*/
}

Hints

• Problem?
1. remove all object, intermediate or temporary files
2. Rebuild with debugging info on (-g) and optimisation off (-O0)
3. Still problematic? --> debugger!

• Debug first a serial version of your program
• Some errors only occur

• With optimized code (possible reasons: initialized variables? Wrong pointers? Buffer overflow?)
• Outside of debug session (possible reason: different timing?)
• With many processes

Debugging

1. Introduction / General Debugging
2. Typical bugs
3. Tools Overview
4. Introduction TotalView
5. Debugging with TotalView OpenMP
6. Debugging with TotalView MPI

Debuggers in general

• test and debug a target program

• Common features:
• flow control (run, step, into)
• actions points
• view registers values
• view call stack
• inspect and edit program memory

Debug Tools Overview
• GDB (OpenSource):

• Minus: not optimal for beginners, multi-thread and multi-process possible

• Valgrind (OpenSource):
• Plus: detect memory leaks or cache misses, works also for threads
• Minus: does not run programs in parallel, threads are serialised. Only minimal MPI support
• Modules on Himster2: debugger/Valgrind/<version>-<toolchain>

• Intel’s Vtune
• Profiler for serial and parallel code, OpenMP and MPI

• RogueWave’s TotalView (Closed Source)
• More in this lecture
• Plus: User friendly; serial, threaded and multi-process programs
• Minus: Costs you ”an arm and a leg”
• Modules on Himster2: debugger/TotalView/2018.0.5_linux_x86-64

• Which to chose? Availability on your platform and fits your needs.

Debugging

1. Introduction / General Debugging
2. Typical bugs
3. Tools Overview
4. Introduction TotalView
5. Debugging with TotalView OpenMP
6. Debugging with TotalView MPI

How to use totalview

• via command line, on Himster head node:
$ module load debugger/TotalView/2018.0.5_linux_x86-64

• interactively:
$ totalview &

• Normal:
$ totalview [totalviewArgs] executable [-a executable_args]

• Attach to running program:
$ totalview [totalviewArgs] executable -pid [PID#] [-a executable_args]
find out PID# with
$ps ax

• Attach to a core file:
$ totalview [totalviewArgs] executable coreFileName [-a executable_args]

Totalview and Preparations

• Main features:
• Interactive debugging
• Attaching to a process
• Analyse core-dumps
• reverse debugging

(reverse anytime during debug)

• To enable debugging
• debug enabled compilation: -g

• creates pointers to your source code lines
• source code still needs to be available at the path during

compilation
• 1st step: no optimisations: -O0

• later use -O3
• may change the behaviour of your program with different

errors

TotalView

• “Standard tool” for parallel debugging
(OpenMP, MPI, CUDA)

• Wide compiler (Python, C, Fortran) and
platform support (Linux, Unix, MacOS,
no Windows)

• Process window:
• State of one process / thread

Source code panel

Stack FrameCall Stack Trace

Tabbed panel

TotalView Root Window

• provides details of state of all processes and threads à important for next lecture

TotalView Source Code Panel

• Toggle Source: Code and/or Assembler (View > Source) (make sure to use “-g”)

TotalView Tabbed Panel

• Action Points (Right click: Dive, Delete, Disable, Modify)
• Add: Click on line number in source panel (only code after optimisation possible to add)

• Threads and Processes with their status

TotalView Stepping Commands

• Select how to proceed from actual PC location
• next: Next line in same function
• step: go into sub function
• return to: go into end of sub function
• out: leave current function

• Select group of threads / processes affected

TotalView Diving

• Double click on variable: “Dive” to get more information

• Right click on value and change it. à live update!

TotalView action points

• click on the source code line surrounded by a small grey box
• make sure you complied with the correct parameters (-g -O0)

• Execution will stop once this line is reached. To proceed, press
Go or other stepping controls.

TotalView Evaluation

• Create a Action Point and change its properties to transform it
into a Evaluation point.

• The Expression is executed, once the point is reached.
• You can write full programs: change variables, conditions, etc.
• Do a full test drive without recompiling.

TotalView Watchpoint

• Break point, when a register (variable value) changes

1. Run your program from inside TotalView, halt it.

2. From the menu select: “Action Point > Create
Watchpoint” and enter your variable name.

• You can add conditional statement in the properties of the
Action Point.

• These Watch Points can also be saved (see Menu Action
Point), but by default they get deleted after execution.

Post-Mortem Analysis

Process does segmentation fault etc.

1. In bash: “ulimit -c unlimited” (check with ulimit –a and look for “core file size”)

2. Build your app with -O0 and –g and run

3. Test: ”kill -s SEGV <PID>”

4. Core file will be generated in same directory

5. Analyse with
“totalview executable coreFileName”
(or “gdb executable coreFileName”)

• Currently not allowed on Himster2, only backtrace (this will change)

• Hint: With “gcore <pid> -o <filename>“ a core dump is being generated and program remains
running.

Live Demo I

1. Login into Himster 2 Headnode
2. Load module debugger/TotalView/2018.0.5_linux_x86-64
3. Run interactively totalview &
4. Provide Application Name and arguments
5. (Post-Mortem Debugging: Provide core file)
6. Setting Breakpoints

• click in source pane
• conditional breakpoints possible

Live Demo II

1. Start with “Live Demo I”

2. Inspecting an variable: expression <variablename>, type: <type>

3. Inspecting an array: expression: *<arrayname>, slice: [:], type: <type>[dims]
• Hint: Drawing possible

4. Inspecting an array: expression: *<arrayname>, slice: [:], type: <type>[dims]
5. Right click and say “Create Watchpoint”

• Will interrupt as soon as the selected array item changes

Set up your workbench

• Connect two times via SSH to Mogon2 / HIMster2 and work on the head node

1. Use the first SSH connection for editing (gedit, vi, vim, nano, geany) and compiling
$ compiling: gcc -g -O0 -o ExecutableName SourceFileName.c

2. Use the second connection for the interactive usage of TotalView:
$ module load debugger/TotalView/2018.0.5_linux_x86-64
$ totalview &

Exercise 1:
Learning objectives:
• Familiarise with TotalView
• Add temporal test code to your program

Steps:
1. Download the skeleton from OpenMP exercise 2

from lecture webpage:
• wget https://www.hi-

mainz.de/fileadmin/user_upload/IT/lectures/WiSe2018/HPC/fil
es/02.zip && unzip 02.zip

2. Compile WITHOUT -fopenmp and open these
programs in totalview. With and without:

1. Debug flag: -g
2. Optimisation: -O0 and -O3

Check for source code panel and possible lines
to set a break point.

3. get familiar with TotalView: Set a breakpoint, dive into variables, add
variables to your expression list, step through your program

4. Change the number of iterations n after you launched your program
to n=10. Why does it not work?

5. Compile your program again with a variable n. Change its value to 10
after your program has been launched.

6. Add an Action Point which evaluates the following:
print out the value of sum.
hint: add printf(“%d\n”, sum);
à Congratulations! You changed your program, did a test drive,
without recompiling it!

7. Add an Watchpoint to be notified when the pi is changed.

https://www.hi-mainz.de/fileadmin/user_upload/IT/lectures/WiSe2018/HPC/files/02.zip
https://www.hi-mainz.de/fileadmin/user_upload/IT/lectures/WiSe2018/HPC/files/MPI-05.zip%20&&%20unzip%20MPI-05.zip
https://www.hi-mainz.de/fileadmin/user_upload/IT/lectures/WiSe2018/HPC/files/MPI-04.zip%20&&%20unzip%20MPI-04.zip

