HPC Programming

Debugging, Part I
Peter-Bernd Otte, 22.1.2019

Definition of a bug Recap

f4 |
* “bug” :=errors or glitches in a program P61 | Onckam shadol | e CEnam.
. /000 ‘ s = JM 03 7 0 o
- incorrect result. e i, 2 215 725057
033 ProO » 2. 30y26yS
Cons ok z./z«og?ay/ij
. . . . KIS -z ~ 033 4l ' Jeod
* most difficult part of debugging: finding the bug. I oot ik 1 J»”J
. . . =50 \ 7
Once found, correcting is relatively easy 1700 Started Gogial Taps (Sine <hect
1S 25 towted Nult s Adder Tt
. :
prove: bug bounty programs o Relon*70 Pune| F
* debuggers: help programmers locate bugs by: f ol in Celay -
executing code line by line, watching variable values .

i 3'\: tual o4 bu ein ouUnA:
: : : ré% e JJLYJ“IAJ. R ‘H[“ .
locating bugs is something of an art: RORIRY PV i)

* why? a bug in one section of a program cause
failures in a completely different section

* there is no defined right way to debug

1946, moth removed from relay

Call Stack and Program Counter

e (Call stack = stack of “stack frames”
* LIFO (last in, first out)

* Function call 2 new stack frame.
Removed when call ends

* Program Counter (PC):

Stack Trace

|

Stack Frame

G sese: Thread 4 (47718062581504) (Stopped) HEEdmmms

main. omp_fn. 1,
omp_in final,
start_thread,
_ clone,

FP=2h663a2h5es0
FP=2b663a2b5e90
FP=2h663a2b5£30
FP=2h663a2h5£38

/|

Function "main. _omp_fn.1":

Block "$bl":
1: 0x007270el
Local variables:
x: 0.75000005
suml : 0
W le-07
SUm: 0

Registers for the frame:

Gmmmr . M THEFACADCOODIN F1ANTIN

* Hardware register in processor, indicating the actual point in program sequence.

e Stack Frame includes a return address
- PC can be reset at end of called subfunction

 Stack pointer:

e Address register, that points to the top of the call stack

Function2()

Functionl()

FunctionO()

Hints Recap

Think before coding --> Software Engineering

Problem?
1. remove all object, intermediate or temporary files
2. Rebuild with debugging info on (-g) and optimisation off (-00)
3. Still problematic? --> debugger!

Debug first a serial version of your program

Some errors only occur
* With optimized code (possible reasons: initialized variables? Wrong pointers? Buffer overflow?)
e Qutside of debug session (possible reason: different timing?)
* With many processes

TotalView

* “Standard tool” for parallel debugging
(OpenMP, MPI, CUDA)

* Wide compiler (Python, C, Fortran) and
platform support (Linux, Unix, MacQOS,
no Windows)

* Process window:
 State of one process / thread

* Last lecture: Stepping, Diving,
Breakpoints, Watchpoints

X /gpfs/fs1/home/pbotte/Exercise 3/pi6Debug
File Edit “iew Group Process Thread Action Point Debug Tools Window Help

Group (Control) /] p Ii

Go Halt Kill Restart| Next Step Out Run To|Record GoBack P

5 e | /s?

rey Uns

Stack Trace

Process 1 (0): pisDebug (Exited or Never Created

Mo current thread
r Stack Frame

No current thread

A ||No current thread

Call Stack Trace Stack Frame

£

Function main in pié_correct.c ol |

=

11

13§

14 int 1;

15 double w, 2, sum, sum0, pi;
16 clock_t t1,t2;

18 # ifdef _OPENMP
19 double wtl, wtl;
20 # endif
21
22 # ifdef OPENMP
pragma omp parallel
24 {
25 % pragma omp single

27 b /% end omp parallel */
28 # endif

29

30 gettimeofday (S&tvl, &tz);
3l # ifdef _OPENMP

32 wtl=omp_get wtime () ;

33 # endif

12 int main(int argc, char** argwv)

17 struct timeval twvl, tv2; struct timezone tz;

Source code panel

26 printf ("OpenMP-parallel with %1d threads’wn", omp_get_num_threads());

£

~

|~

Action Points] Th[eads]

Pl ol P T Tl |

Tabbed panel

Recap
Status: enabled on nodes,
login not yet

Post-Mortem Analysis

Process does segmentation fault etc.
In bash: “ulimit -c unlimited” (check with ulimit —a and look for “core file size”)
Build your app with -O0 and —g and run

Test: “kill -s SEGV <PID>"

Core file will be generated in same directory

s e

Analyse with
“totalview executable coreFileName”
(or “gdb executable coreFileName”)

* Currently not allowed on Himster2, only backtrace (this will change)

* Hint: With “gcore <pid> -o <filename>“ a core dump is being generated and program remains
running.

Debugging

o Uk W N e

Introduction / General Debugging
Typical bugs

Tools Overview

Introduction TotalView

Debugging with TotalView OpenMP
Debugging with TotalView MPI

Deadlocks, Race condition

* see lectures from OpenMP and MPI

* Deadlock: cyclic list, all threads proceed when receive OK from predecessor

R)) R B

- see exercise 4 today.

* Race Condition: multiple threads, shared resources, result depends on scheduler

We will go directly to the hands-on part

Parallel Debugging Hints

* During runtime, change between Threads and Processes:

oUW Ll ucL urC Lo I F 4

~J

Action Puints] Th[eads] P-| F+| Px| T-| T+|
1.1 (47083909360000) T in main. _omp_fn. 1

1.2 (47083921864448) T in main. _omp_fn. 1l

1.3 (47083923965696) T in main. omp fn.1

1.4 (47083926066944) B2 in main. _omp_fn. 1l

Shows the current status of threads and processes

* The headline will show the current process / thread:

Go Halt Kill Ry

Stack Trace

Parallel Debugging Hints

* Dive into Variables across Threads and Processes (right click)

Dive

Add to Expression List

Across Processes
Across Threads

%\ sum - main._omp_fn.1 - 1.1

Set Barrier

Create Watchpoint

Enable
Disahble

Delete

Froperties

File Edit View Tools Window Help
1.1 = HE | FE [K€
Expression: | sum Address: | Multiple
Slice: | Filter: |
Type: | double
Thread \Value |
1.1 {47083309360000) -

1.2 (47083921864448)
1.3 (47083923965636)
1.4 (470833926066344)

3.76470588146713
3.13993399572
£.5993993357712

Set up your workbench

* Connect two times via SSH to Mogon2 / HIMster2 and work on the head node

1. Use the first SSH connection for editing (gedit, vi, vim, nano, geany) and compiling
S compiling: gcc -g -00 -o ExecutableName SourceFileName.c

2. Use the second connection for the interactive usage of TotalView:
S module load debugger/TotalView/2018.0.5_linux_x86-64
S totalview &

* For MPI:
* module load mpi/OpenMPI/3.1.1-GCC-7.3.0

e Compile with: mpicc -g -O0 -0 ExecutableName SourceFileName.c
* Run on head node with: mpirun -n 2 ./ExecutableName

Exercise 2:

Learning objectives:

* TotalView: Replay Feature
* Note: this process slows down everything by order of
magnitudes!
Steps:
1. Download the skeleton from OpenMP exercise 2 from
lecture webpage:
* wget https://www.hi-

mainz.de/fileadmin/user_upload/IT/lectures/WiSe2018/HPC/files/02
.zip && unzip 02.zip

2. Compile as a single core not optimised (-g -O0) program and

run this program with totalview. Activate the ReplayEngine
when setting up in the debug options.

1. Seta breakpoint at “pi=w*sum;”
2. dive into the variable sum and

3. Go backin time with “Prev” (and forth with “next”)
and check the value of sum

run the program.

File Edit View Group Process Threg

X! /apfs/fs1/home/pbotte/Ex2/pi

Group (Control) | D ii . I

YR

MNext Step Out Run To
Ero hi

Go Halt Kill Rest

D 493 3

Fecord GoBack Prev UnStep Caller BackTo Live Save

F Stack Frame
[T | main, Function "main": A
_libc_start_main, FP=Tffe argc: 0x00000001 (1) N
_start, FP=Tffe3dT7615a8 argv: 0x7ffe3d7615c8 -> 0xTffe3d763234 -
Local variables:
i: 0x05f5e100 (100000000}
w: le-08
®: 0.999999985
S : 314159263 .359043
pi: 0
tl: 0x0000000000111700 (1120000}
t2: l]xl]l]l]l]l]l]l]l]l]l]4l]l]?ad (4196269)
el rbaiak kdmeree _,’L
Function main in pi.c et |

24 /* End of SPACE for FIRST EXERCISE +*/ A

25

26 gettimeofday (&twl, &tz);

27 # 1fdef _OPENMP

28 wtl=omp_get wtime();

29 # endif

30 tl=clock():

31

32 /* calculate pi = integral [0..1] 4/{1+x**2) dx */

33 w=1.0/n;

34 sum=0.0;
for {i=1;i<=n;i++) {

= x=w* ((double)i-0.5);
37 sum=sum+f (%) ;
38 }

P pi=wrsum;

40

41 t2=clock();

42 # ifdef _OPENMP

43 wt2=omp_get_wtime () ;

44 # endif

45 gettimeofday (&twl, &tz);

46 printf{ "computed pi = %24 16g'n", pi); £
-~ 1
Action F'oims] Th[eads] P-| B+| Px| T-| T+|
1 pi.c#39 mnain+Oxbd A

https://www.hi-mainz.de/fileadmin/user_upload/IT/lectures/WiSe2018/HPC/files/02.zip
https://www.hi-mainz.de/fileadmin/user_upload/IT/lectures/WiSe2018/HPC/files/MPI-05.zip%20&&%20unzip%20MPI-05.zip
https://www.hi-mainz.de/fileadmin/user_upload/IT/lectures/WiSe2018/HPC/files/MPI-04.zip%20&&%20unzip%20MPI-04.zip

Exercise 3:

Learning objectives:

« TotalView: OpenMP 3. Change the number of threads (in the menu

Steps:

1. Download the solution from OpenMP lecture 3,

exercise 5 from lecture webpage:

* wget https://www.hi-
mainz.de/fileadmin/user upload/IT/lectures/WiSe2018/HP

C/files/OpenMP-ex5 solution.zip && unzip ...

2. Compile as multithreaded:

cc -fopenmp -O0 -g -0 ExecutableName
SourceFileName.c

and run this program with totalview on many
cores (OMP_NUM_THREADS=4).

under: Process > Startup Parameters) and run
again.

Check the result with 1, 2, 4 and 8 threads in the
team. Why is it different.

Find out the reason for this, by stopping the
program before the sum gets reduced. Dive into
the variable sum across threads (by right clicking
it during runtime).

HINT: If you do not manage to stop TotalView
before the reduction takes place, use solution
from exercise 4:

https://www.hi-

mainz.de/fileadmin/user upload/IT/lectures/WiS
e2018/HPC/files/OpenMP ex4 solution.zip

https://www.hi-mainz.de/fileadmin/user_upload/IT/lectures/WiSe2018/HPC/Lecture_HPC_4.pdf
https://www.hi-mainz.de/fileadmin/user_upload/IT/lectures/WiSe2018/HPC/files/OpenMP-ex5_solution.zip
https://www.hi-mainz.de/fileadmin/user_upload/IT/lectures/WiSe2018/HPC/files/OpenMP_ex4_solution.zip

Exercise 4:

Learning objectives:

* TotalView: MP! 3. Compile and run with 2 processes. Stop the
program after some MPI-data has been
exchanged between the ranks (eg break point at
Steps: line 54).
1. Download the solution from MPI lecture 6, Dive into variables across processes.
exercise 4 from lecture webpage:
* wget https://www.hi-

4. Bonus: Change the code to get a blocking

mainz.de/fileadmin/user upload/IT/lectures/WiSe2018/HP situation, see MPI lecture 6, exercise 4, step 3:
C/files/MPI-04-solution.zip && unzip ... https://www.hi-

: Loaol' the corresponding MPI module before launching mainz.de/fileadmin/user upload/IT/lectures/WiS
totalview

e2018/HPC/Lecture HPC 6.pdf

2. Launch TotalView, set up a “File > New Debug
Parallel Program...” and select “Open MPI” as the
Parallel System. Select 2 Tasks (or more) in the
“Parallel Settings”, hit “next” and choose your
executable. Run!

Debug this situation to familiarise with TotalView
and parallel debugging.

https://www.hi-mainz.de/fileadmin/user_upload/IT/lectures/WiSe2018/HPC/Lecture_HPC_6.pdf
https://www.hi-mainz.de/fileadmin/user_upload/IT/lectures/WiSe2018/HPC/files/MPI-04-solution.zip
https://www.hi-mainz.de/fileadmin/user_upload/IT/lectures/WiSe2018/HPC/Lecture_HPC_6.pdf

