
HPC Programming
Profiling

Peter-Bernd Otte, 29.1.2019



Post-Mortem Analysis

Process does segmentation fault etc.

1. In bash: “ulimit -c unlimited” (check with ulimit –a and look for “core file size”)

2. Build your app with -O0 and –g and run

3. Test: ”kill -s SEGV <PID>”

4. Core file will be generated in same directory

5. Analyse with 
“totalview executable coreFileName”
(or “gdb executable coreFileName”)

• Currently not allowed on Himster2, only backtrace (this will change)

• Hint: With “gcore <pid> -o <filename>“ a core dump is being generated and program remains
running.

Recap

Status: enabled on nodes, 

login22 with 250MB limit



Profiling (and Tracing)

1. Overview
2. Profiling
3. Tracing (only briefly)



Possible Tools
• MUST

• MPI usage correctness checking
• PAPI

• Interfacing to hardware (CPU) performance 
counters

• Periscope Tuning Framework
• Automativ analysis and tuning

• Scalasca
• Large-scale parallel performance analysis

• TAU
• Integrated parallel performance system

• Vampir
• Interactive graphical trace visualisation & 

analysis
• Score-P

• Community-developed instrumentation & 
measurement infrastructure

• Nice overview: 
• VI HPS Tools Guide
• http://www.vi-hps.org/tools



Typical Workflow

1. Programming

2. Execution

3. Debugging (TotalView, gdb)
4. Analysis

1. Hardware monitoring (Cache usage and PAPI)
2. Profile and trace analysis (TAU, Score-P, Periscope, Scalasca, Vampir)

5. Apply changes and start again from (2.)



Tuning basics

• For success, think before about
• right algorithms and libraries
• compiler flags
• Further optimisation possible in parallel file system, networking and other involved components 

(advanced)
• Measure your progress (todays topic)

• To judge different optimisations
• Test for bottlenecks
• (your measurement always affects your runtime)



The 80/20 rule

• “If you optimize everything, you will always be unhappy.”
Donald Knuth
https://www.brainyquote.com/quotes/donald_knuth_181636

• Programmers spend 20% of their time to get 80% of the possible speedup. 
à Leave the remaining 20% for later…

• Find out the important parts of your code.

https://www.brainyquote.com/quotes/donald_knuth_181636


Possible Metrics

• Measurable:
• Counting (call of a user-function, MPI-function, etc.)
• Duration (e.g. time in these calls)

• Inclusive: Timings include time spent in all timings of subroutines

• Exclusive: Time spent in that routine, without subroutines.

• Sizes (eg. bytes transferred, written to disc)
• and function(counts, duration, sizes)

• Hints:
• Execution is non-deterministic (throttling, other threads in OS, 

software and hardware bugs, etc.)
• Run several times!

Example (inclusive / exclusive)

int func_a() {
int c;
c = 1*1;
func_b();
c += 1;
return c;

}

inclusive



Instrumentation techniques

• Static instrumentation
• Prepared before execution

• Dynamic instrumentation
• At runtime

• Both change (minimal) the principal timing of the application
• But also possible to change the memory access pattern
• Accuracy of timers and counters will change
• Measurement itself needs performance



Profiling Applications with TAU

• Next 9 slides: curtesy to Dalibor

• universal tool for single core, multi thread and multiple process applications

• Available on HIMster2, Modules:

module load toolchain/gompi/2017a

module load profile/TAU/gompi_2017a_2.27.1

• Application is instrumented in source code automatically by replacing CC with tau_cc.sh, i.e.

CC=tau_cc.sh -optTauSelectFile=./select.file

• One can give a lot of extra options for more details, see for example

man taucc

or

http://www.cs.uoregon.edu/research/tau/tau-usersguide.pdf



Paraprof for Visualization

• If you want to use paraprof need:
module load lang/Java/1.8.0_121 (this is automtically load in the profile module)

• run
$ paraprof
and it takes the profiles in current directory

• If you want MPI Matrix plots issue:
export TAU_COMM_MATRIX=1



Profile breakdown

• There is inclusive and exclusive timings (check for load imbalances and barriers!)
• In the standard screen click on Mean to get a summary



Profile Breakdown – Exclusive mean



Profile Breakdown

• This will give you a first impression of where time is spent

• Note that some lines read Throttled!

• For the timing to not drastically impact runtime a mechanism called throttling is introduced in TAU. 

• If a function that takes 

<10 µs/call and 

is called >100k 

à it is no longer profiled, and times are attached to the calling process

• These parameters can be set using:

TAU_THROTTLE_NUMCALLS

TAU_THROTTLE_PERCALL

• One can disable this feature with

TAU_THROTTLE=0



MPI Communication Matrix



MPI Communication Matrix

NOTE: This is only available if you have TAU_COMM_MATRX=1 in 
Your submission script.
Matrix can be shown for all paths, only for subroutines, 
where the number of calls can be displayed, or max messag size etc.



Non-MPI & Track IO

• If you want to profile non-mpi code use:
export TAU_MAKEFILE=/cluster/him/tau/toolchain/gompi/2017a/2.27.1/x86_64/lib/Makefile.tau-
pdt

• Track IO using:
-optTrackIO
as compile option via
export TAU_OPTIONS='-optTrackIO -optVerbose‘



IO



IO



Scalability chart



Profiling with Scalasca on HIMSter2

• Since 29.1.2019 13:30 (too close for todays lecture):
Scalasca 2.4 is available
module load perf/Scalasca/2.4-gompi-2018°

• Will be topic of a additional workshop



Set up your workbench

• Connect via SSH to Mogon2 / HIMster2 and work on the head node
• Load necessary software:

module load toolchain/gompi/2017a
module load profile/TAU/gompi_2017a_2.27.1



Exercise 5:

Learning objectives:

• What routines account for the most time? How 
much?

Steps:

1. Download the MPI ring solution (MPI exercise 4) 
from lecture webpage:

• wget https://www.hi-
mainz.de/fileadmin/user_upload/IT/lectures/WiSe2018/HP
C/files/MPI-04-solution.zip
and unzip

2. Compile and run with
tau_cxx.sh ring.c -o ring
mpirun -n 2 ./ring
paraprof

3. Click on the mean and individual nodes and 
check the gives times for the routines.

https://www.hi-mainz.de/fileadmin/user_upload/IT/lectures/WiSe2018/HPC/files/MPI-04-solution.zip


Exercise 6:

Learning objectives:

• Show Call graph

Steps:

1. Use same example as before and
compile and run with
TAU_CALLPATH=1
TAU_CALLPATH_DEPTH=100
export TAU_CALLPATH
export TAU_CALLPATH_DEPTH
tau_cxx.sh ring.c -o ring
mpirun -n 2 ./ring
paraprof

2. Click: Windows -> Thead -> Call Graph


