
HPC Programming
OpenMP, Part II

Peter-Bernd Otte, 23.10.2018

Recap

Anatomy of a cluster computer

• Latencies:

(all numbers are platform dependent)

Core 0 Core 1
L1 16k L1
L2 2M L2

L3 8M

Core 0 Core 1
L1 16k L1
L2 2M L2

L3 8M

System Memory 256 GB

Node interconnect

Core 0 Core 1
L1 16k L1
L2 2M L2

L3 8M

Core 0 Core 1
L1 16k L1
L2 2M L2

L3 8M

System Memory 256 GB

Core 0 Core 1
L1 16k L1
L2 2M L2

L3 8M

Core 0 Core 1
L1 16k L1
L2 2M L2

L3 8M

System Memory 256 GB

Operation min overhead in
cycles

Hit L1 cache 1-10

Miss all caches 100

Page miss 100.000

(Data via
interconnect)

1000 (1µs)HDD

ccNUMA

Comparison OpenMP / MPI

OpenMP
• shared memory directives (compile time)

• to define work decomposition
• no data decomposition

(data in shared memory)
• synchronisation is implicit

Possible speedup:
• memory limited: Total bandwidth / single

core bandwidth = 4 (hardware dependent)
• CPU limited: Number cores (+ possible cache

effects)
• storage limited: do not use

MPI (Message Passing Interface, later
this course)
• software library (run time)
• user defines:

• distribution of work & data
• communication (when and how)

Possible speedup:
• Per node limits: see OpenMP
• RAM/CPU limited: utilisation of N nodes
• Storage limited: ? (use node local scratch)

OpenMP: Execution Model (II)

• Begin execution as a single process (master thread)
• Fork-join of parallel execution

1. Start of 1st parallel construct: Master thread creates N threads
2. Completion of a parallel construct: threads synchronise (implicit barrier)
3. Master thread continues execution

• At next parallel construct: work balancing with existing threads

fork

join

fork

join

OpenMP: Parallel Region Construct + Syntax

#pragma omp parallel [clause [, clause]]
block

// emp end parallel

• block = to be executed by multiple threads in parallel. Each
code executes the same code.

• Clause can be (“data scope”):
• private (list) ß variables in list private to each thread & not initialised,

standard for loop variables
• shared (list) ß variables in list are shared among all thread, standard
• firstprivate, lastprivate, threadprivate, copyin, reduction
• set number of threads: num_threads(N)

Good practice:
• always declare all

variable either in
private or shared to
avoid surprises (race
conditions)

• or: default(none)
• Declare private var’s

inside parallel regions

Introduction OpenMP

1. Hardware Anatomy
2. Motivation
3. Programming and Execution Model
4. Work sharing directives
5. Data environment and combined constructs
6. Common pitfalls and good practice (“need for speed”)

Control Structures - Overview

• Parallel region construct
• parallel

• Worksharing constructs
• for
• sections
• task
• single
• master

• Synchronisations constructs
• critical

• Defines work load among threads
• worksharing & sync constructs do not launch

new threads
• parallel construct creates a team of threads which

execute in parallel

• worksharing comes with implicit barrier
(threads wait until complete work finished):
• none on entry
• normally one at the end

OpenMP: for Directive (1)

• Parallelises the following for loop
• in canonical form à see next slide.
• loop iterations: all independent!

• Within parallel region
• #pragma omp for [clause …] new-line

for-loop(s)
//end of for loop

• OR: Combined parallel worksharing constructs: “parallel for”
#pragma omp parallel for new-line

for-loop(s)
//end of for loop + end of parallel region

Allows the iteration
count (of all associated
loops) to be computed
before the (outermost)

loop is executed.

OpenMP: for Directive (2)

• Canonical loop form (see 2.6 in “OpenMP Application Programming Interface”, Nov 2015)

• Credo: number of iterations computable at start of loop

• for (initialize; test; increment) { ... }

• initialize, test and increment: loop invariant expression

• Initialize: var = lb, e.g. “int i = 0”

• var = loop variable

• Test: var operator b

• operator is one of the following: <, <=, >, >=

• Increment: (integer expression) e.g. i++, ++i, i=i+5, …

• var

• must not be modified in the loop body

• integer (signed or unsigned)

• Examples:

• wrong: for (int i = 0; i != n; i++)

• canonical: for (int i = 0; i < n; i++)

OpenMP: for directive (3)

• Clause:
• private (list)

• reduction (op: list)
• collapse (n)

(n=const.: iterations of following n nested loops
are collapsed into one larger iteration space)

• schedule (type, chunk)
(how the work is divided among the threads)

• nowait

• … (see API section 2.7.1)

• At the end of each for (unless nowait specified): implicit barrier
(Barrier? see next slide)

Will be discussed and
used in next lecture

OpenMP: for Directive (4)

• double res[30];
#pragma omp parallel private(i) shared(h)
{

h=3;

#pragma omp for
for (int i=0; i< 30; i++) {

res[i] = f(i);
}

} /* OMP End parallel

h=3 h=3 h=3

for i
(0..9)
f(i)

for i
(0..9)
f(i)

for i
(0..9)
f(i)

OpenMP: Barrier

• barrier = all threads in a team wait until all threads
reached barrier

• Implicit barrier
• entry and exit of parallel constructs
• exit of all other control constructs (except: nowait clause)

• Explicit barrier
• critical directive
• single directive

à see later

barrier

team of threads

OpenMP: sections directive
• each block: independent
• each block is executed only once by one thread.
• order of execution is implementation dependent

#pragma omp parallel
{

#pragma omp sections
{

#pragma omp section
{ /*block 1*/ a=…; b=…; }
#pragma omp section
{ /*block 2*/ c=…; d=…; }
#pragma omp section
{ /*block 3*/ e=…; f=…; }
...

} // end of omp sections
} // end of omp parallel

a=…; c=…; e=…;

b=…; d=…; f=…;

Comparison: sections directive ó PThreads

• C++11 standard library: more flexibility, more things can go wrong.
#include <iostream>
#include <thread>

void function_1() {
//Some work

}
void function_2() {

//some work
}

int main() {
std::thread thread_1(function_1); /*Thread constructor */
std::thread thread_2(function_2);
thread_1.join(); /*forces main thread to wait for thread1/2*/
thread_2.join(); /*otherwise undefined behaviour */
return 0;

}

g++ pthreadtest.cpp -pthread -std=c++11 -o pthreadtest

main th1 th2

main

main

Pitfalls! Check for
• private and shared variables
• cache coherence effects

OpenMP: task directive concept

• parallelises several tasks
• eg. traverse a linked list with a recursive algorithm, Fibonacci numbers
• length not known at beginning (parallel for not possible)

• concept:
1. thread generate tasks
2. team of thread executes tasks

• Note:
• tasks can be nested (task may generate a task)
• all tasks can be executed independently
• overhead(for) < overhead(tasks)

tasks

thread

thread threadthread

OpenMP: task directive syntax & example
• Defines a task within parallel region:

#pragma omp task [clauses] new-line
block

• clauses:

• untied

• default (shared | none | private | firstprivate)

• private (list)

• firstprivate (list)

• shared (list)

• if (scalar expression)

• Optional: taskwait

Specifies a wait on completion of all direct child tasks

generated since beginning of current task (not to

“descendants”)

#pragma omp taskwait new-line

• OpenMP 4: Specifies to wait on completion of child

tasks and their descendant tasks:

#pragma omp taskgroup

Example:

#pragma omp parallel num_threads(2)
{
#pragma omp single
{
printf(“E = “);
#pragma omp task
printf(” m ");

#pragma omp task
printf(” c^2 ");

#pragma omp taskwait
printf(“ Wow “);

}
} // end of parallel region

Output (with and w/o taskwait):

1. “E = Wow m c^2” or ”E = WOW c^2 m”

2. ”E = m c^2 Wow” or ”E = c^2 m Wow”

Tasks are executed at task

execution point, add:

#pragma omp taskwait

only one thread

packages tasks

OpenMP: master Directive

• master
• section of code executed only be the master thread
• no implicit barrier upon completion or entry

• Syntax:
#pragma omp master newline

block

• benefit? à next slide

OpenMP: Single Directive

• single
• section of code executed by single thread
• not necessarily the master thread
• implicit barrier upon completion

• Syntax:
#pragma omp single [clauses] newline
block

• Good practice:
Reduce the fork-join overhead by combining
• several parallel parts (for, task, sections)
• sequential parts (single, master)

in one parallel region (parallel)

fork

join

fork

join

Critical directive

• Explicit barrier
• Enclosed code

• executed by all threads
• restricted to only one thread at a time

• Syntax:
#pragma omp critical [(name)] new-line
block

• A thread waits at the entry of critical region
until no other thread in the team is
executing a region with the same name
• If (name) is omitted: All regions belong to the

same undefined region name.

• Example: count 0’s in matrix:

int matrix[rows][cols];
bool number_of_zeros = false;
#pragma omp parallel default(none)
shared(matrix, number_of_zeros)
{
#pragma omp for
for (int row = 0; row < rows; row++) {
for (int col = 0; col < cols; col++) {
if (matrix[row, col] == 0) {
#pragma omp critical
{ number_of_zeros++; }

}
}

}
}
printf(“The matrix has %d 0’s.”,
number_of_zeros);

Difference to single directive?

OpenMP: single ó critical

• single:
• section executed by single thread
• only once

• critical:
• section executed by one thread at

a time
• num_threads() times

int a=0, b=0;
#pragma omp parallel num_threads(4)
{
#pragma omp single
a++;
#pragma omp critical
b++;

}
printf("single: %d critical: %d", a, b);

result:
single: 1 critical: 4

OpenMP: cancel and cancelation point -
directive
• Example: check matrix for 0 entry:

bool has_zero = false;
#pragma omp parallel default(none) shared(matrix, has_zero)
{

#pragma omp for
for (int row = 0; row < rows; row++) {

for (int col = 0; col < cols; col++) {
if (matrix[row, col] == 0) {

#pragma omp critical
{ has_zero = true; }
#pragma omp cancel for

}
}
#pragma omp cancellation point for

}
}

Set up your workbench

• Connect 2 to Mogon2 / HIMster2 via SSH
srun --pty -p parallel -N 1 --time=02:00:00 -A m2_himkurs --reservation=himkurs bash -i

1. Use the first SSH connection for editing (gedit, vi, vim, nano, geany) and
compiling: cc -fopenmp -o pi pi.c

2. Use the second connection for the interactive execution on the nodes (no execution on the head node!):
OMP_NUM_THREADS=4 ./pi

• Download the files via: wget https://www.hi-mainz.de/fileadmin/user_upload/IT/lectures/WiSe2018/HPC/files/02.zip &&
unzip 02.zip

Hints:
• Check compiler version: cc -V

• Run: OMP_NUM_THREADS=4 ./pi
or export OMP_NUM_THREADS 4

• Possible to check reservation with: squeue -u USERNAME

https://www.hi-mainz.de/fileadmin/user_upload/IT/lectures/WiSe2018/HPC/files/02.zip

Exercise 3: worksharing directives
Learning objectives:

• Use of “for”, “critical” and “single” directive

Steps:

1. Use the code from exercise 2 and compile as

openmp program (-fopenmp with cc) and run with

OMP_NUM_THREADS=4

2. Add parallel region and for directive and compile.

Run with OMP_NUM_THREADS=1. Expected pi

value: correct.

3. Run with OMP_NUM_THREADS=2. Expected pi

value: wrong. Repeat also with different

OMP_NUM_THREADS values. Why is it

unpredictable? (Where is the race condition?)

4. Add private(x) clause, compile and run with

OMP_NUM_THREADS=2 again. Repeat also with

different OMP_NUM_THREADS values. Expected pi

value: still unpredictable. Why?

5. Add critical directive around sum statement, compile

and run. Test different OMP_NUM_THREADS several

times in a row,

1. how is the speedup with increasing OMP_NUM_THREADS?

(why do e.g. 4 threads take longer than 2?)

2. compare results. Are the results the same to the last digit?

Why not?

6. Optimize: Move critical region outside loop. Run

several times with different OMP_NUM_THREADS.

How does

1. speedup

2. and precision evolve?

7. Modify exercise 1: Use a single construct to let only

one thread print out the number of threads in the

team.

8. Optional, see next slide: write a parallel program

that calculates a Fibonacci Number in a recursive

implementation: F(n) = F(n-1) + F(n-2)

Exercise 4: Fibonacci Numbers
int fibo (int n) {
int x,y;
if (n < 2) return n;
#pragma omp task shared(x) if(n>30)
x = fibo(n-1);
#pragma omp task shared(y) if(n>30)
y = fibo(n-2);
#pragma omp taskwait
return x+y;

}
int main() {
int NN=10000;
#pragma omp parallel
{
#pragma omp master
fibo(NN);

}
}

comments:
• binary tree of tasks

• F(n) = F(n-1) + F(n-2)
• inefficient O(n2) recursive implementation

• traversed using a recursive function
• taskwait: A task cannot complete until all

tasks below in the tree are complete
• local variables: x, y à private to current task

• declare as shared on child tasks to
prevent firstprivate copies

Stop creating
tasks at some

level in the tree

OpenMP: References

• OpenMP Application Programming Interface, Examples
Version 4.5.0 – November 2016
https://www.openmp.org/wp-content/uploads/openmp-examples-
4.5.0.pdf

https://www.openmp.org/wp-content/uploads/openmp-examples-4.5.0.pdf

