HPC Programming

Message Passing Interface (MPI), Part IV
Peter-Bernd Otte, 11.12.2018

Introduction MPI Recap

Overview / Getting Started

Messages & Point-to-point Communication
Nonblocking Communication

Error Handling

Groups & Communicators

Collective Communication

MPI 1/0

MPI Derived Datatypes

0 o N Uk W DN R

Common pitfalls and good practice (“need for speed”)

10. Debugging and Profiling

MPI: MPI_ Comm_split

* Creates new communicators based on colors

e int MPI_Comm_split(MPI_Comm comm, int color, int key,
MPI_Comm *newcomm)
e ordering in new group:

* key ==0-> as sorted in old

Tracker
communicator

* key !=0 - according to key values

* one member group: color = MPI_UNDEFINED

MPI_ COMM_WORLD global rank
communicator rgnk in sub-comm

* Example:

MPI _Comm newcomm;

MPI Comm_rank(MPI_COMM_WORLD, &my rank);
mycolor = my_rank/3;

MPI Comm_split(MPI_COMM World, mycolor, ©, &newcomm);

MPI_Comm_rank(newcomm, &my_new_rank);

EM Calorimeter
communicator

MPI: MPI_Reduce Recap

* Reduces values on all processes to a Processes
single value
(eg global sum)

int MPI_Reduce(

void *sendbuf /*in*/,

void *recvbuf /*out*/,

int count /*in*/,

MPI Datatype datatype /*in*/,
MPI Op operator /*in*/,

int dest process /*in*/,
MPI_Comm comm /*in*/)

* hints:
* with count>1, MPI can operate on arrays

* sendbuf and recvbuf need to different
(no aliasing!)

MPI: P2P & Collective Communicatio

ALL processes in communicator must call SAME collective function at the same time.

Arguments in all ranks must fit:
* eg. same dest_process, datatype, operator, comm
e depending on function

Only rank dest_process may use recvbuf (but all ranks have to provide such argument)

MPI_Reduce calls matched solely on:
* the communicator and
e the order on which they are called.
* No helping tags or sender id available.

Recap

MPI: Broadcast and Scatter

Broadcasts the same message from the process
”sending_rank” to all other processes of the
communicator

()=
O= O O O

Recap

Scatter: Sends data from one process to all
other processes in a communicator

®—,
O= O OO

MPI: MPI_Gather Recap

Gathers together values from a group of processes @ @ @
- O O O

* MPI_Gather(
void* send_data /*in*/,
int send_count /*in*/, @ - m
MPI_Datatype send_datatype /*in*/,
void* recv_data /*out*/,
int recv_count /*in*/,
MPI_Datatype recv_datatype /*in*/,
int dest_proc /*in*/,
MPI_Comm comm /*in*/)

e Special cases: MPI_Gatherv

Introduction MPI

Overview / Getting Started

Messages & Point-to-point Communication
Nonblocking Communication

Error Handling

Groups & Communicators

Collective Communication

MPI 1/O

MPI Derived Datatypes

W X N Uk WD R

Common pitfalls and good practice (“need for speed”)

10. Debugging and Profiling

Motivation: MPI I/O 1

 Standard (POSIX): each process rank 0
writes to a single separate file on
scratch(!) device

 Typical situation: analysis
framework

 parallel = scales!

» collection of all these single files
—> serialisation or worse

* many files 2 bad for meta data
server

Motivation: MPI |/O 2

* Legacy: only single rank
reads/writes

» Typical situation: apps recently
parallelised, OpenQCD

* serial access and broadcast (=2
worse than

* reads only a fraction of a file 2
bad for meta data server

Motivation: MPI |/O 3

e Speed up with cooperation and rank O
parallelism

MPI 1O:
* simultaneous access cooperation
* single file

* provides replacement function
for POSIX

file O file 1 file 2 file 3

Motivation: MPl & MPI 1O 4

MPI 1/0 is based on:
 MPI & parallel FS (= fast)

* handle read/write accesses like sending/receiving of messages

parallel 1/0 requirements analogy on MIPI

collective file operations MPI communicators
non-contiguous access MPI derived datatypes not yet discussed in
nonblocking operations MPI functions with immediate return in this lecture

combination with Wait.

MPI 10 principles

* MPI file contains elements of a single MPI datatype (“etype”)

* rank file access provided by access templates

* read/write routines in MPI 10: nonblocking / blocking and collective / individual reads
* file pointers: individual and shared

e automatic data conversion in heterogenous systems

MPI: Access possibilities

* Array of data in file

do di d2 d3

* 3 ranks processing this file
1. full view on file for every rank (like standard POSIX)
with
MPI_File_write_at()

2. reduced view on file for every rank with
MPI_File_set_view() and MPI_File_write()

file view rank 0..2

view rank O

view rank 1

view rank 2

-

J\Jf

MPI 10: Opening a file

int MPI_File_open (
MPIl_Comm comm,
ROMIO_CONST char *filename,
int amode,
MPI_Info info,
MPI_File *fh /*out*/)

collective within communicator.
 all processes in comm. call function with same arguments (filename, amode)
* process-local files with MPI_COMM _SELF as communicator

returns a file handle
* representing the file, communicator and the current view (see next slides)

default:
» displacement = 0, etype=MPI_BYTE = each process has access to whole file (“slide before: full view”)

No info = MPI_INFO_NULL, otherwise provide timeouts, buffer sizes or stripe factors here.

MPI 10: Access Mode

* remember: same amode argument on all processes (collective!)
* combe these arguments bit wise = Operator | (better not +)

* Be as restrictive as possible to allow for storage optimisation

caution: any

MPI_MODE_APPEND all file pointers set to end of file following call of
MPI_FILE_SET_VIEW

MPI_MODE_CREATE Create the file if it does not exist. will reset this to 0
MPI_MODE_DELETE_ON_CLOSE

MPI_MODE_EXCL Error creating a file that already exists.

MPI_MODE_RDONLY Read only.

MPI_MODE_RDWR Reading and writing.

MPI_MODE_SEQUENTIAL only sequential access, eg: tapes

MPI_MODE_WRONLY Write only.

MPI_MODE_UNIQUE_OPEN file not opened concurrently

MPI 10: Closing a file

* collective function
* int MPI_File_close(MPI_File *fh)

MPI 10: File Deletion

1. int MPI_File_delete(
ROMIO_CONST char *filename,
MPI_Info info)

* file need not be currently opened

2. Provide argument ,,amode = MPI_MODE_DELETE_ON_CLOSE” in MPI_File_Open

MPI 10: Writing to file with explicit offset

(needed for exercise 7)

int MPI_File_write_at(
MPI_File fh,
MPI_Offset offset,
ROMIO_CONST void *buf,
int count,
MPI_Datatype datatype,
MPI_Status *status)

* buffer includes min count elements of type datatype

writes count times elements from buffer to to the file

starting at offset * sizeof(datatype) from begin of view

file view rank 0..2

MPI 10: Reading from a file with explicit
offsets

* int MPI_File_read_at(
MPI_File fh,
MPI_Offset offset,
void *buf,
int count,
MPI_Datatype datatype,
MPI_Status *status)

* read count elements of datatype
 starting at offset * sizeof(datatype) from begin of view

* EOF is reached, once amount of data read < count
* use MPI_Get_Count(status, datatype, received count)
* note: EOF is no error

MPI1 10: Individual file pointers 1/2

* int MPI_File_read(MPI_File fh, void *buf, int count, MPI_Datatype datatype, MPI_Status *status)

* int MPI_File_write(MPI_File fh, ROMIO_CONST void *buf, int count, MPIl_Datatype datatype,
MPI_Status *status)

* same functions as those functions with “_at”, except:

» each process has it’s private current value of file offset (“file pointer”)
» after access, private offset updates:

* private offset points to the next datatype of the last accessed.

MPI1 10: Individual file pointers 2/2

* int MPI_File_seek(MPI_File fh, MPI_Offset offset_new, int whence /*Update mode*/)
* Update mode = MPI_SEEK_SET —> set private file offset to offset_new
 MPI_SEEK_CUR - advance private file offset by offset_new
 MPI_SEEK_EOF = set private file offset to EOF + offset_new

inquire offset:
* int MPI_File_get_position(MPI_File fh, MPI_Offset *offset)

* int MPI_File_get byte_offset(MPI_File fh, MPI_Offset offset, MPI_Offset *disp)
* disp = absolute byte position of offset (nonnegative integer)

* To convert an offset into byte displacement (needed eg for a new view)

MPI 10: File views 1/2

* Each process gets a separate view of the file, collective
operation (necessary for exercise 8)

* Defined by (Displacement, datatype, filetype)
e Standard = (0, MPI_BYTE, MPIl_BYTE) = linear byte stream

e can be changed during runtime

* int MPI_File_set_view(
MPI_File fh,
MPI_Offset disp,
MPI_Datatype etype,
MPI_Datatype filetype,
ROMIO_CONST char *datarep /*see next slide*/,
MPI_Info info)

* Get view via MPI_File_get view()

d0 di d2 d3

view rank 0

view rank 1 view rank 2

-

A\Jf

MPI 10: File views 2/2

* Worked out example, create MPI_Type filetype first:

etype = MPI_CHAR;

ndims = 1; /*dimensions of following arrays*/

array_of _sizes[9] = 3;
array_of subsizes[0] = 1;
array_of_starts[0] = my_rank;

MPI Type create_subarray(ndims,
array_of _sizes, array_of_subsizes,
array_of_starts, MPI_ORDER_C, etype,
&filetype);

MPI Type commit(&filetype);

MPI File set view(fth, 0, etype, filetype,..

)5

d0 d1 d2 d3

view rank O

view rank 1 view rank 2

s

J\Jf

MPI 10: Data representation

* native:
e datain file = data in memory

* no type conversions (no loss of precision and I/O performance) on homogenous systems
* not possible on heterogenous systems

* no guarantee by MPI to mix C and Fortran

* internal:
* implementation dependent, for heterogenous systems

e external32
» follows standardized representation (IEEE)

 all input/output according to “external32” representation = interoperable between
different MPI impl.

» due to type conversions from/to native: data precision and |I/O performance is reduced
* can be read/written also by non-MPI programs

Introduction MPI

Overview / Getting Started

Messages & Point-to-point Communication
Nonblocking Communication

Error Handling

Groups & Communicators

Collective Communication

MPI 1/O

MPI Derived Datatypes

Wi ¥ O U kb WD E

Common pitfalls and good practice (“need for speed”)

10. Debugging and Profiling

Most common MPI pitfalls:

FIRST: optimise single core performance

efficiency of MPI application-programming is not portable
— optimize for every system needed (when aiming for highest speeds)

Most Common pitfalls:
e Deadlocks and serialization
e Late sender
e Late sender

further hints:
e Overlap communication and computation
* Global communication involving many or all MPI processes include costly synchronizations.

* combine such reductions to overhead
* try to share huge buffers instead of copying

* Check resources, try to avoid local swap = use more machines, less ranks / threads per node

MPI optimisation

e Advanced:

* Contention:
* Miss ratio senders / receiver,
* low bisectional bandwidth between nodes,

* non ideal network routing

* Non optimal domain decomposition (slicing your detector, try slices with smaller surfaces):
* Try different “data decomposition (divide the problem differently)”
* too much communication overhead,
* as many ranks on a single node - avoid network

* On multi socket systems: sending rank should be on core in hardware, which is closest to network link
* Check for load imbalances, use tuning tools

MPI optimisation: Binding

* Binding processes and their threads prevents the OS scheduler from moving them across the available CPU sockets or
cores.

* Memory-bound MPI application with one MPI process per socket
e SMPIEXEC SFLAGS_MPI_BATCH --map-by ppr:1:socket --bind-to core a.out

* Compute-bound MPI application with as many processes per node as there are cores
* SMPIEXEC SFLAGS_MPI_BATCH --bind-to core --map-by core a.out

* MPI application with n processes per socket (n < #cores)

* For certain MPI applications that are neither completely compute- nor completely memory-bound it might be
beneficial to run them with less processes per socket than cores are there.

e SMPIEXEC SFLAGS_MPI_BATCH --map-by ppr:2:socket --bind-to core a.out
 ## number of processes per socket ---"

* Examining the Binding, OpenMP: --report-bindings

* With OpenMP: SMPIEXEC SFLAGS_MPI_BATCH -x OMP_NUM_THREADS -x OMP_PLACES -x OMP_PROC_BIND -x
KMP_AFFINITY \

--map-by ppr:1:socket --bind-to socket a.out
* Depends on MPI Implementation (Intel: pnning) and if OpenMP is used.

MPI optimisation: Binding

mpirun -n 4 --report-bindings -bind-to core ring-sub

[login22:17413] MCW rank © bound to socket ©[core O[hwt ©-1]]: [BB/../../../../../ ../ /S A/ Ao oo]

[login22:17413] MCW rank 1 bound to socket 1[core 10[hwt ©-1]1]1: [../../../.. /. /.. /.. /.. /.. /..1[BB/../../ ./ S]]]
[login22:17413] MCW rank 2 bound to socket ©[core 1[hwt ©-1]]: [../BB/../../../../../ ./ A/ Sl oS]

[login22:17413] MCW rank 3 bound to socket 1[core 11[hwt ©-1]1]: [../../../.. /. /. /. S/) Q[../BB//o/ oo oo/ oi/ o/ 0]

MPI: Possible sources of errors

1.
2.
3.

Starting multi-core program: do not copy / fork your code, improve existing.
Error free single core program.
Hardware (CPU, RAM, network, storage) free of errors.

program hangs . . _
send / receive do not match (sender it, communicator, tag, etc.) = verify parameters

MPI_Send crashes:
Buffer address correct? Still correct? eg OpenMP task gets executed with delay (use “omp taskwait”)

MPI_Recv crashes: MPI library tells, msg is larger than recv buffer
message from correct sender received? Did tags match? wrong message order? = use unique tag

received message data is wrong
Send ?u]tfgrpas been modified (buffered send) before sent / Received buffer has been accessed before
arrival of data

Using OpenMP and MPI in parallel:
—> Tell mpirun about it, use correct MPI multi-thread level (eg MPI_THREAD_SERIALIZED or
MPI_THREAD_MULTIPLE)

MPI 1/0

* Best practices of using MPI 1/0O:
* make as few file I/O calls in general
* in order to create big data requests and
* have as few meta-data accesses (seeks, query or changing of file-size).

* Change MPI_Info key-values, according to your needs, eg:

e MPI Info info;
MPI Info create(&info);
/* Enable ROMIO's collective buffering */
MPI Info set(info, "romio cb read"”, "enable");
MPI Info set(info, "romio cb write", "enable");
MPI_File open (MPI_COMM_WORLD, fn, MPI_MODE_CREATE | MPI_MODE_WRONLY, info, &fh);

General File Access Hints

* Bad I/O performance due to:
* Accessing that same portion of the file = locks
* Otheri/oin parallel
* random accesses
» datasize(i/o requests) << filesystem block size
* files too small / too many files / too many open&closes - metadata servers overloaded

* Avoid data access:
* Recalculate when it’s faster
* group small operations to larger chunks
* Reduce data accuracy, possible? = less data!

e Helpful:
* Use parallel I/0O libraries: MPI 1/O, HDFS5, etc. and use their non-blocking MPI 1/O routines
* large and contiguous requests
* Use derived datatypes to support MPI /O in its work
* Open files in the correct mode (eg only readonly) to allow for optimisations
* Not too many open files at the same time
* flushes only when absolutely necessary.
* Create files independent of the number or processes (easier post processing and restarts with different rank size)

Optimisation

* Good read for further studies:
* Hager, Wellein: “Introduction to High Performance Computing for Scientists and Engineers”, CRC Press

Introduction MP]

Overview / Getting Started

Messages & Point-to-point Communication
Nonblocking Communication

Error Handling

Groups & Communicators

Collective Communication

MPI 1/0

MPI Derived Datatypes

Wi N O U WD RE

Common pitfalls and good practice (“need for speed”)

10. Debugging and Profiling

topics of future

lectures

MPI: Profiling Glimpse

e See where time is spent

° I d e ntify id I e pe ri Od S [NON) N\ TAU: ParaProf: Mean - /gpfs/fs1/home/djukanov/profile/fexamples/io

File Options Windows Help

Metric: TIME
Walue: Exclusive
Units: seconds

00 |\ TAU: ParaProf: [gpfs/fs1/home/djukanov/profile/fexamples/openQCD-1.6/devel/dirac
. : : 10,415] fopent)
File Options Windows Help 10,027 ——— fcl0se()

Metric: TIME 9,217] fseek)
value: Exclusive 4,887 — fread()
1,201 [int main() C [{main.c} {7,1}-{25,1}]
0,939 [void bad_readichar *) C [{io.c} {28,1}-{50,1}]
Std. Dew. 0,14 [fwrite() [THROTTLED]
Mean 0,032 | void good_read{char *) C [{io.c} {51}-{26,1}]
Max 8,0E-6 | .TAU application
Min
node 0
node 1
node 2
node 3
node 4
node 5
node 6
node 7
node 8
node 9
node 10
node 11
node 12
node 13
node 14
node 15
node 16

[»

[

Set up your workbench

* Connect 2 times via SSH to Mogon2 / HIMster2

1. Use the first SSH connection for editing (gedit, vi, vim, nano, geany) and
module load mpi/OpenMPI/3.1.1-GCC-7.3.0
compiling: mpicc -o ExecutableName SourceFileName.c

2. Use the second connection for the interactive execution on the nodes (no execution on the head node!):
salloc -p parallel -N 1 --time=01:30:00 -A m2_himkurs --reservation=himkurs -C skylake

module load mpi/OpenMPI/3.1.1-GCC-7.3.0
mpirun -n 2 ./ExecutableName

* Download the files via: wget https://www.hi-mainz.de/fileadmin/user upload/IT/lectures/WiSe2018/HPC/files/MPI-03.zip
&& unzip MPI-03.zip

Hints:

 If the reservation with salloc —p parallel fails, try:
* salloc-p devel -n 4 -A m2_him_exp

* The reserved resources with salloc can’t be overwritten with mpirun

* Resources(salloc) => Resources(mpirun)

* Possible to check reservation with: squeue -u USERNAME

https://www.hi-mainz.de/fileadmin/user_upload/IT/lectures/WiSe2018/HPC/files/MPI-03.zip

Exercise /:

Learning objectives:
 first usage of MPI 10 and MPI_File_write_at()

Steps:

1. Download the skeleton from lecture webpage:

* wget https://www.hi-
mainz.de/fileadmin/user upload/IT/lectures/WiSe2018/HP

C/files/MPI-07.zip && unzip MPI-07.zip

2. Each rank writes 5 times its rank number into a
common file (do not use more than 9 ranks). The
output should look like (with 4 ranks):
01230123012301230123

Hints:

offset = my_rank + Comm_Size * i, i=0..4
Each process uses the default view

To write numbers as ASCII characters use
buf ='0"' + (char)my_rank;

You can use “cat FILENAME” to check your written
output.

Real world hint: Your home directory is not a
parallel FS. For full speed use /lustre/...

https://www.hi-mainz.de/fileadmin/user_upload/IT/lectures/WiSe2018/HPC/files/MPI-04.zip%20&&%20unzip%20MPI-04.zip
https://www.hi-mainz.de/fileadmin/user_upload/IT/lectures/WiSe2018/HPC/files/MPI-05.zip%20&&%20unzip%20MPI-05.zip
https://www.hi-mainz.de/fileadmin/user_upload/IT/lectures/WiSe2018/HPC/files/MPI-04.zip%20&&%20unzip%20MPI-04.zip

Exercise &:

Learning objectives:

* Write to a file with MPI_File_set_view

Steps:

1. Download the skeleton from lecture webpage:

* wget https://www.hi-
mainz.de/fileadmin/user upload/IT/lectures/WiSe2018/HP
C/files/MPI-08.zip && unzip MPI-08.zip

2. Achieve the same result as in exercise 7 but make
use of MPIl_Type_create_subarray,
MPI_File_set view and MPI_File_write

https://www.hi-mainz.de/fileadmin/user_upload/IT/lectures/WiSe2018/HPC/files/MPI-06.zip%20&&%20unzip%20MPI-06.zip

