
Why I am learning a new
programming language -
and why you should too!

- part 2 -
“Concurrent programming in Rust” 
by example

Dr. Michael O. Distler

Mainz, 12 February 2019

special lecture as part of “Introduction to HPC Programming”  
(Dr. Bernd-Peter Otte)

1

Content

• Ownership and borrowing.

• Traits: Send and Sync.

• Smart pointers: Arc<T> and Mutex<T>.

• Asynchronous communication 
between threads: mpsc::channel.

• Examples: ping, ring, 
(dining philosophers problem)

2

Ownership

3

fn main() {
 let mut v = Vec::new();
 v.push(1);
 v.push(2);
 take(v);
 // ...
}

fn take(v: Vec<i32>) {
 // ...
}

v 1
2move ownership

Ownership

4

fn main() {
 let mut v = Vec::new();
 v.push(1);
 v.push(2);
 take(v);
 v.push(3);
}

fn take(v: Vec<i32>) {
 // ...
}

error: use of moved variable v

Borrowing

5

fn main() {
 let mut v = Vec::new();
 push(&mut v);
 read(&v);
 // ...
}

fn push(v: &mut Vec<i32>)
{
 v.push(1);
}

fn read(v: Vec<i32>) {
 // …
}

Traits: Copy and Clone

Traits abstract over behavior that types can have
in common.

Examples: Copy and Clone

• Copies happen implicitly, for example as part of
an assignment y = x. The behavior of Copy is
not overloadable; it is always a simple bit-wise
copy.

6

Traits: Copy and Clone

Traits abstract over behavior that types can have in common.

Examples: Copy and Clone

• Cloning is an explicit action, x.clone(). The implementation
of Clone can provide any type-specific behavior necessary
to duplicate values safely. For example, the
implementation of Clone for String needs to copy the
pointed-to string buffer in the heap. A simple bitwise copy
of String values would merely copy the pointer, leading to
a double free down the line. For this reason, String is Clone
but not Copy.

7

Traits: Send and Sync

Send and Sync are fundamental to Rust's
concurrency story.

• A type is Send if it is safe to send it to another
thread.

• A type is Sync if it is safe to share between
threads (&T is Send).

8

Smart pointer
… are data structures that not only act like a
pointer but also have additional metadata and
capabilities. 
Examples:

• Vec<T>

• Box<T> for allocating values on the heap

• Rc<T>, a reference counting type that enables
multiple ownership

9

Smart pointer: Arc<T>
• Arc<T>: A thread-safe reference-counting pointer. 'Arc'

stands for 'Atomically Reference Counted'.

• The type Arc<T> provides shared ownership of a value of
type T, allocated in the heap. Invoking clone on Arc produces
a new Arc instance, which points to the same value on the
heap as the source Arc, while increasing a reference count.
When the last Arc pointer to a given value is destroyed, the
pointed-to value is also destroyed.

• Shared references in Rust disallow mutation by default, and
Arc is no exception: you cannot generally obtain a mutable
reference to something inside an Arc.

10

Smart pointer: Arc<T>

11

// lecture13/src/bin/arc.rs
// cd lecture13; cargo run --bin arc
use std::sync::Arc;
use std::thread;
fn main() {
 let five = Arc::new(5);
 for _ in 0..10 {
 let five = Arc::clone(&five);
 thread::spawn(move || {
 println!("{:?}", five);
 });
 }
}

Change the code, so each thread prints it’s ID.

Smart pointer: Mutex<T>
• Mutex<T>: A mutual exclusion primitive useful for

protecting shared data

• This mutex will block threads waiting for the lock to
become available. The mutex can also be statically
initialized or created via a new constructor. Each
mutex has a type parameter which represents the
data that it is protecting. The data can only be
accessed through the RAII guards returned from lock
and try_lock, which guarantees that the data is only
ever accessed when the mutex is locked.

12

RAII: Resource acquisition is initialization

Communication between threads

pub fn channel<T>() -> (Sender<T>, Receiver<T>)

• Creates a new asynchronous channel, returning
the sender/receiver halves. All data sent on the
Sender will become available on the Receiver in
the same order as it was sent, and no send will
block the calling thread (this channel has an
"infinite buffer", unlike sync_channel, which will
block after its buffer limit is reached). recv will
block until a message is available.

13

Communication between threads

pub fn channel<T>() -> (Sender<T>, Receiver<T>)

• The Sender can be cloned to send to the same
channel multiple times, but only one Receiver is
supported.

• If the Receiver is disconnected while trying to send
with the Sender, the send method will return a
SendError. Similarly, if the Sender is disconnected
while trying to recv, the recv method will return a
RecvError.

14

Communication between threads

15

use std::sync::mpsc::channel;
use std::thread;

let (sender, receiver) = channel();

// Spawn off an expensive computation
thread::spawn(move|| {
 sender.send(expensive_computation()).unwrap();
});

// Do some useful work for awhile

// Let's see what that answer was
println!("{:?}", receiver.recv().unwrap());

Smart pointer: Mutex<T>

16

use std::sync::{Arc, Mutex};
use std::thread;
use std::sync::mpsc::channel;

const N: usize = 10;
let data = Arc::new(Mutex::new(0));
let (tx, rx) = channel();
for _ in 0..N {
 let (data, tx) = (Arc::clone(&data), tx.clone());
 thread::spawn(move || {
 let mut data = data.lock().unwrap();
 *data += 1;
 if *data == N {
 tx.send(()).unwrap();
 }
 });
}

rx.recv().unwrap();

Change the code, so the
value of data is printed

Exercise 3

17

1. Try to understand ‘ping.rs’
2. Run the program: 

cargo run --bin ping -- --cycles 100000
3. Change the transmitted data size. 

Does the transmit time change? 
Why (not)?

Exercise 4

18

1. Try to understand ‘ring.rs’
2. Run the program: 

time target/debug/ring --threads 16
3. Try to understand ‘MPIring.c’
4. Run the program: 

time mpirun target/debug/MPIring

5. Do you notice a difference?
6. Double the number of threads in both

cases

Further reading and viewing
• The Rust Programming Language 

https://doc.rust-lang.org/stable/book/

• Vorlesung „Programmieren in Rust“, Universität
Osnabrück, Wintersemester 2016/17. 
https://github.com/LukasKalbertodt/programmieren-in-rust

• https://www.karlrupp.net/2015/06/40-years-of-
microprocessor-trend-data/

• https://youtu.be/ecIWPzGEbFc

• https://youtu.be/6f5dt923FmQ

19

https://github.com/LukasKalbertodt/programmieren-in-rust
https://youtu.be/ecIWPzGEbFc
https://youtu.be/6f5dt923FmQ

Installing Rust

• rustup: the Rust toolchain installer 
https://github.com/rust-lang-nursery/
rustup.rs

curl https://sh.rustup.rs \  
 -—silent --output rustup-init.sh  
sh rustup-init.sh

20

https://github.com/rust-lang-nursery/rustup.rs

