HPC Programming

Debugging, Part |
Peter-Bernd Otte, 14.1.2020

Debugging

o Uk W NMNE

Introduction / General Debugging
Typical bugs

Tools Overview

Introduction TotalView

Debugging with TotalView OpenMP
Debugging with TotalView MPI

Definition of a bug

* “bug” :=errors or glitches in a program
—> incorrect result.

* most difficult part of debugging: finding the bug.
Once found, correcting is relatively easy

e prove: bug bounty programs

* debuggers: help programmers locate bugs by:
executing code line by line, watching variable values

locating bugs is something of an art:

* why? a bug in one section of a program cause
failures in a completely different section

* there is no defined right way to debug

9/4

D& Gackom >w {/-lwo 7.032 syy 015
/000 ; s L~ oahom A 9.087 §¥YC 095 <o
1370w, (032 MP -me zﬁﬁm 2 /a,-e(v;’) 76/5725055(-
63y PRO. > 2. 130¢26yS
Con b 21306703

”ﬁ%s e-x =~ 033 ol ;,rw;/ SroJ Jeob
im ¢ -- row A -

; (o o fipm:
1/7d¢)‘1&[‘1“_«‘ Co;‘v\g BRQ)’J(S;'\Q c—kc&t)

Lluw T s dde

~—

[es

Relan*0 @unc| F
Uhoﬂ).n n 2 \qu\ :

\Say

- lad s R
F'N';Y qch ‘»C L) Lz N ounA:
PR i B R i e
uo \‘,/_40;& W :

1946, moth removed from relay

What’s it all about

* humans write high level code, e.g. in C

BUT

* hardware understands assembler

WO W

#include <stdio.h>
#include <time.h>
#include <sys/time.h>
#ifdef _OPENMP

include <omp.h>
#endif

#define f{a) (4.0/(1.0+A*A))
int n = 100000000;

int main{int argc, char** argv)
{

int i;

double w,x, sum, pi;

clock_t t1, £2;

struct timewval tvl, tv2; struct timezq
ifdef OPEMMP

double wtl, wtl;

endif

ifdef _OPENMP

int myrank, num_threads;

compiler

& linker

* error during execution? = today’s topic

_start:

0x00400521:
0x00400522:
0x00400523:
0x00400524 :
0x00400525:
0x00400526:
0x00400527:
0x00400528:
0x00400529:
0x0040052a.:
0x0040052b :
0x0040052¢:
0x00400524d.:
0x0040052e :
0x0040052f :
0x00400530:
0x00400531:
0x00400532:
0x00400533:
0x00400534 :
0x00400535:
0x00400536:

xorl

mowv

popl
nov

andl

pushl
pushl
movl

movl

%ebp, 2ebp

%rdx, %9

%rsi
%rsp, rdx

$-16, Zrsp

Zrax
%rsp
$0x400810, %c8

$0x4007a0, Zrex

todays lecture topics

* Today we concentrate on following classes of bugs:
* Arithmetic
* Logic
* resource

* Next lessons:
* Multi-threading in OpenMP and multi-processing in MPI
* Deadlock, Race condition, concurrency errors

* We concentrate on run-time and logical errors,
no syntax or semantic (= compiler) nor linker errors.

Call stack

Call stack = stack of “stack frames”

* function call 2 new stack frame.
Removed when call ends

e “stack frame”:

o II)

local variables (in example:

argument parameters (in example: “a, b”)
return address (in example: “1st line in main()”)

saved copies of registers modified by subprograms
which might get restored (in example: none)

has Frame Pointer (FP)

e LIFO (last in, first out)

int myfunc(int a, int b) {
int c;
//do some calculation
return;

}

int main () {
myfunc(a,b);

}

EEREREREE R R IR R R RS Thread4(4??18062581504) (Stopped) ZRERERERERFLRERNRRRRRREENE

omp_in_final,
start_thread,

Stack Trace Stack Frame
[t main. _omp_fn.1, FP=2h663a2h5e50 .\ Functlon "main. _omp_fn. 1" A
FP=2h663aZb5ed0 Block "$bl": |
FP=2h663a2b5£30 i: 0x007270el (7500001)
FP=2b663a2b5£38 Local wariables:
x: 0.75000005
sum0 0

w: le-07
SUm: 0

Registers for the frame:

1
|‘\

G mar . M TFFACANDCOOIN 71 ANTINCTOCCTCLCON

Program counter and Stack pointer

* Program Counter (PC):
* Hardware register in processor, indicating the actual point in program sequence.

e Stack Frame includes a return address
- PC can be reset at end of called sub function

e Stack pointer:
* Address register, that points to the top of the call stack

Function2()

Functionl()

FunctionO()

Debugging

Introduction / General Debugging

Typical bugs

A A A R

Tools Overview

Introduction TotalView

Debugging with TotalView OpenMP
Debugging with TotalView MPI

let’s focus on

the
problems...

Common bugs in C

* Arithmetic
* div 0, over- or underflow, loss of precision

* Logic
* infinite loops, infinite recursion, off-by-one error, syntactically correct “errors”
* Resource

* null pointer dereference, uninitialized variable, wrong data type, access violations and use-after-free
error, resource leaks, buffer overflow

» few examples to warm up...

uninitialized memory

double d;

switch (i) {
case 0: d = 1; break;
case 1: d = 2; break;

¥
printf(“value of d: %f”, d);

e value of d?
—> is arbitrary and depends on what is stored in memory before program launched

» “safety initialisation” recommended

value outside the domain

int x, y, z;
//some calculation
if ((x+y) < z)

return 1;
else

return 0;

* whatis the result for x=y=z=2E9?

- (x+y) outside of int range > overflow = gets negative.

buffer overflow

memory address

main () { comment myPhDResult sglCommand
char comment[100];

int *myPhDResult;

char sqlCommand[200] = “SELECT comments FROM users”;
gets(comment);

//SQLExeceute(sqlCommand) ;

printf(“My PhD Result: %i‘“, myPhDResult);

* any code which puts data in some buffer without checks = possible buffer overflow
* when size(entered value) > size(comment)+1 - adjacent memory gets overwritten

* in C: no reliable error message during compilation or runtime! = debugger with memory checks
helps OR use C++ String class

Arithmetic exceptions

 divide by zero (misnormer: “floating point exceptions” do cover int arithmetic errors too)

» off by one: starting a loop at 1 instead of O, writing <= instead of <, etc...
(Mathlab and Fortran start at 1, python and C at 0)

Syntactically correct “errors”

single statement not in loop:

for (int 1i=0; i<10; i++); X++;

Using a single equal sign to check equality:

char x=‘v’:

while (x=‘y’) { //Assigns ‘y’ to x, tests if x is zero
printf(“continue? ”); gets(y);

}

* syntactically correct, but most likely different programmer intention

* stick to code formatting rules

Memory leaks |

* frequent in C, no automatic garbage collection
(check new techniques like smart pointer in C++11)

* more memory gets allocated during runtime (and halts when all is eaten up)

for (55) {
char *out = (char*) malloc (size);

/*¥do some stuff

and forget to free*/

Memory leaks Il

memory address

* Overstepping array boundaries array[0..9] myPhDResult

int array[10];

int myPhDResult;

for (int i=1; i<=10; i++)
printf(“%d ”, array[i]);

* No hint or halt during runtime

* Only a memory checker finds this error.

return temporary value

char *myfunc() {
char ch;
//so some stuff
return (&ch);

* |ocal variable address from stack is returned

* solution: declare the variable as public before calling myfunc()

free the already freed resource

_memory address

>

int myfunc(int global) {

char *str = (char*) malloc(42); Str

if (global == @) free(str);

//some more statements /

char *str2 = (char*) malloc(20); str2
free(str);
//use of str2 problematic now

* free the already freed resource, but str still points to the old address
 affects by chance the newly allocated variable

NULL dereferencing

char *c; //might be NULL
if (x>0) c=‘h’;

printf(“The character c is: %c“, *c);

 if cis NULL = dereferencing fails

* when dereferencing an object, makes sure it initialised in any path.

Aliasing
char str[42] = “Test Str”;

char *str2 = &str; //bad: str2 is now an alias of str
strcat(str, str2);

* we may get an runtime error

(strcat is no safe function, buffer overflow when 2nd argument > 15)

Aliasing creates problems when different addresses are expected. = try to avoid

functions which expect parameters to be in certain format = be cautious!

Deadlocks, Race condition

see lectures from OpenMP and MPI

Deadlock: cyclic list, all threads proceed when receive OK from predecessor

| e T
\» »

-

Race condition:

multiple threads (min. one write access), shared resources, result depends on scheduler

Debugging OpenMP and MPI - next lecture.

How to avoid bugs

e Switch on compiler warnings! ... and pay attention to them

e Use of simpler methods

* Split larger methods into small, cohesive ones!
* Intuitive idea of what’s being done

* few parameters only, best with named parameters

* Mixing up various operations in a single expression = confusion

if ((42.%b/c++) > (43.+(10.%e/f))) {

1} else {

}

* Split complicated expressions!
* Make it easy for the debugger

/*do some operation A*/

/*do some operation B*/

double a = 42. * b / c++;
double d = 43. + (10. * e / f);
if (a > d) {

/*do some operation A*/
} else {

/*do some operation B*/

}

Hints

* Problem?
1. remove all object, intermediate or temporary files (“artefacts” in git terms)
2. Rebuild with debugging info on (-g) and optimisation off (-O0)
3. Still problematic? --> debugger!

* Debug first a serial version of your program

* Some errors only occur:
» with optimized code (possible reasons: initialized variables? Wrong pointers? Buffer overflow?)
» outside of debug session (possible reason: different timing?)
* with many processes

Debugging

o U RN &

Introduction / General Debugging
Typical bugs

Tools Overview

Introduction TotalView

Debugging with TotalView OpenMP
Debugging with TotalView MPI

Debuggers in general

* test and debug a target program

e Common features:
* flow control (run, step, into)
* actions points
* view registers values
* view call stack
* inspect and edit program memory

Debug Tools Overview for C

 GDB (OpenSource):
* Minus: not optimal for beginners, multi-thread and multi-process possible

 Valgrind (OpenSource):
* Plus: detect memory leaks or cache misses, works also for threads
* Minus: does not run programs in parallel, threads are serialised. Only minimal MPI support
* Modules on Himster2: debugger/Valgrind/<version>-<toolchain>

* Intel’s Vtune
* Profiler for serial and parallel code, OpenMP and MPI

* RogueWave’s TotalView (Closed Source)
* More in this lecture
Plus: User friendly; serial, threaded and multi-process programs

* Minus: Costs you “an arm and a leg”
* Modules on Himster2: debugger/TotalView/2018.0.5_linux_x86-64

* For Python: pdb, TotalView or included ones in GUIs

* Which to chose? Availability on your platform and fits your needs.

Debugging

o UL N e

Introduction / General Debugging
Typical bugs

Tools Overview

Introduction TotalView

Debugging with TotalView OpenMP
Debugging with TotalView MPI

How to use totalview

* via command line, on Himster head node:
$ module load debugger/TotalView/2018.0.5 linux_ x86-64

* interactively:
$ totalview &

* Normal:
$ totalview [totalviewArgs] executable [-a executable args]

e Attach to running program:

$ totalview [totalviewArgs] executable -pid [PID#] [-a executable args]
find out PID# with

$ps ax

* Attach to a core file:
$ totalview [totalviewArgs] executable coreFileName [-a executable args]

Totalview and Preparations

* Main features:
* Interactive debugging
» Attaching to a process
* Analyse core-dumps

* reverse debugging
(reverse anytime during debug)

* To enable debugging

* debug enabled compilation: -g

* creates pointers to your source code lines

* source code still needs to be available at the path during
compilation

e 1ststep: no optimisations: -00
* later use -03

* may change the behaviour of your program with different
errors

Start a Debugging Session

X TotalView for HPC

What would you like to debug?

(=]

My last session: piBDebug

A new program

A new parallel program

A running program (attach

A core file or replay recording file

Help Manage Sessionsl

;;;;;;;;

Cancel |

TotalView

* “Standard tool” for parallel debugging
(OpenMP, MPI, CUDA)

* Wide compiler (Python, C, Fortran) and
platform support (Linux, Unix, MacQOS,
no Windows)

* Process window:
 State of one process / thread

X /gpfs/fs1/home/pbotte/Exercise 3/pi6Debug
File Edit View Group Process Thread Action Point Debug Tools Window
Group (Controly 7| D ii { " i
kil Restart Record GoBack Prev Un
Stack Trace .J Stack Frame
No current thread 4 ||No current thread 2|
Yi 7
Function main in pi6_correctc et
11 A
12 int main(int argc, char** argv)
13 ¢
14 int 1;
15 double w,x, sum, sum0, pi;
16 clock_t t1,t2;
17 struct timeval twl, tv2; struct timezone tz;
18 # ifdef _OPENMP
19 double wtl, wt2;
20 # endif
o Source code panel
22 # ifdef OPENMP
pragma omp parallel
24 {
25 # pragma omp single
26 printf ("OpenMP-parallel with %1d threads’wn", omp_get_num_threads());
27 y /* end omp parallel */
28 # endif
29
30 gettimeofday (&tvl, &tz);
31 # ifdef _OPENMP
32 wtl=omp_get wtime();
33 # endif £
~ -
Action Points] Th[eads] 22 B3| [z 2| i

TotalView Root Window

» provides details of state of all processes and threads = important for next lecture

X| TotalView for HPC 2018.0.5
File Edit ¥iew Tools Help
| |
Process State Procs |Threads | Members T | Group by:
=1 Breakpoint 1 1 pi M Control Group
=-main._omp_fn.1 1 4 p1.1-4 [share Group
b1 1 1 p1.1 O Hostname
----- 1.2 1 1 p1.2 M Process State
----- 13 1 1 p1.3 [Thread State
----- 14 1 1 P14 B Function
[Source Line
O FC
[Action Point ID
[Stop Reason
[Process ID '
] Thread ID
M ovarars Uald d
Configure zr—l hMove gpl Besetl hMove Down |

TotalView Source Code Panel

* Toggle Source: Code and/or Assembler (View > Source) (make sure to use “-g”)

Function main._omp_fh.1 in pi6_correct.c
34 tl=clock(); AT 0=00400c41:
35 0=00400c42:
36 /* calculate pi = integral 0x00400c43:
37 w=1.0/n; g% 0x00400c44: mulsd a1, Zauml
38 sum=0.0; 0x00400c45 .
#pragma omp parallel privat 0x00400c46:
40 0x00400c47:
41 sum0=0.0; g% 0x00400c48: mowsd a0, -40 (Zrhp)
42 # pragma omp for 0x00400c49:
43 for (i=1;1<=n;i++) 0=00400c4a.:
44 { 0x00400c4hb:
45 x=w*((double)i-0.5); 0xx00400cdc:
sum0=sum0+f (x) ; == 0x00400c4d: movsd -40(%chp) , Zaum0
47 } 0x00400c4e:
pragma omp critical 0x00400c4f
49 { 0=00400c50:
50 sum=sum+suml ; 0x00400c51:
51 } i 0:x00400c52: mulsd -40{%chp), Zam0
52}y /*end omp parallel*/ ~ 0x00400c53:
53 pil=w*sum; 0x00400c54 :
54 0x00400c55:
55 t2=clock() ; 0=00400c56:
56 # ifdef OPENMP Fi i 0x00400c57: movsd 0x400e38, Zaml
al 1 = el

TotalView Tabbed Panel

* Action Points (Right click: Dive, Delete, Disable, Modify)
* Add: Click on line number in source panel (only code after optimisation possible to add)
Action Points] Th[eads] ﬂﬂﬁll]ﬂ_

Brd 1 pif correct. c#30 main+0x3b £
2 pib correct.c#d6 main. omp fn. 1+0xB5

* Threads and Processes with their status

Action Points] Th[eads] o] Pe] Px| T-| T+
1.1 (47718045874560) T in main. _omp_fn.1 -
1.2 (47718058379008) -2 in main. _omp_fn.1

1.3 (47718060480256) T in main. _omp_fn.1

1.4 (47718062581504) T in main. _omp_fn.1

TotalView Stepping Commands

» Select how to proceed from actual PC location
* next: Next line in same function

e step: go into sub function

* return to: go into end of sub function
e out: leave current function

» Select group of threads / processes affected

X| /gpfs/fs1/home/pbotte/Exercise 3/pi6Debug

File Edit View Group Process Thread Action Point Debug Tools Window

Group (Control)

DB B (595 «

Go Halt Kill Restart| Next Step Out Eun To| Record GoBack Pr

Process 1 (170589): pi6Dehug (At Breakpoint 2)

Thread 2 {47718058373008) (At Breakpoint 2)

7 g 2 M
ey Unstep Caller BackTo Live

TotalView Diving

* Double click on variable: “Dive” to get more information

X| x - main._omp_fn.1 - 1.2

File Edit View Tools Window Help
1.2 & HE | PE | €€ >
Expression: | x Address: | 0x2bB639eh3e2t

Type: | double
Yalue @
0.25000005

* Right click on value and change it. = live update!

41 w=1.0/n;

TotalView action points oD,

for (i=1;1<=n;1++)

44
45 *x=w*((double)1-0.5);
sum=sum+£ (x) ;
: . 47 3
 click on the source code line surrounded by a small grey box 48 pi=w*sum;
. . 49
* make sure you complied with the correct parameters (-g -O0) 50[t2=clock () ;
_ _ o 51 # ifdef OPENMP
* Execution will stop once this line is reached. 52 wk2=omp_get_wtine () ;
. 53 # endif
To proceed, press Go or other stepping controls. 54 gettimeofday(&tv2, &tz)

55 printf{ "computed pi =
56 printf{ "CPU time {cloc
57 # i1fdef _OPENMP

58 printf{ "wall clock t
59 # endif

60 printf{ "wall clock tin
61 return 0;

62}

63

~ i
Action Points] Threads |

14 Ex2. c#d42 main+0x57
9 Ex2. c#d6 main+0x84

TotalView Evaluation

* Create a Action Point and change its properties to transform it X/ Action Point Properties
into a Evaluation point.

+ Breakpoint - Barrier “* Evaluate ID: 17

* The Expression is executed, once the point is reached.

. . . printf("%din”, sumj]
* You can write full programs: change variables, conditions, etc.
* Do a full test drive without recompiling.

Expression:

v C++ © C , Forran - Assembler

Location: /home/photte/EX2/EXZ.c#42 Addresses... |

J7 Enable action point

7 Plant in share group

ok | Delete Cancel Help |

TotalView Watchpoint

* Break point, when a register (variable value) changes
1. Runyour program from inside TotalView, halt it.

2. From the menu select: “Action Point > Create
Watchpoint” and enter your variable name.

* You can add conditional statement in the properties of the
Action Point.

* These Watch Points can also be saved (see Menu Action
Point), but by default they get deleted after execution.

\| Watchpoint Properties

“* Unconditional - Conditional

— When Hit, Stop—
4 Group
+ Process

+ Thread

ID: 18

Address: | 0x7fic8h742d00
J7 Enahle watchpoint

7 Plant in share group

Length in Bytes: | §

I sum

ok | Delete

Cancel

Post-Mortem Analysis

Process does segmentation fault etc.

In bash: “ulimit -c unlimited” (check with ulimit —a and look for “core file size”)
Build your app with -O0 and —g and run

Test: “kill -s SEGV <PID>"

Core file will be generated in same directory

s W

Analyse with
“totalview executable coreFileName”
(or “gdb executable coreFileName”)

e Supported on Himster2

* Hint: With “gcore <pid> -o <filename>“ a core dump is being generated and program remains
running.

Live Demo |

Login into Himster 2 Headnode

Load module debugger/TotalView/2018.0.5_linux_x86-64
Run interactively totalview &

Provide Application Name and arguments

(Post-Mortem Debugging: Provide core file)

SRR A e S o

Setting Breakpoints
* click in source pane
» conditional breakpoints possible

Set up your workbench

* Connect two times via SSH to Mogon2 / HIMster2 and work on the head node

1. Use the first SSH connection for editing (gedit, vi, vim, nano, geany) and compiling
S compiling: gcc -g -00 -o ExecutableName SourceFileName.c

2. Use the second connection for the interactive usage of TotalView:
S module load debugger/TotalView/2018.0.5 linux_x86-64
S totalview &

Exercise 1:

Learning objectives:

 Familiarise with TotalView

* Add temporal test code to your program

Steps:

1.

Download the skeleton from OpenMP exercise 2
from the git repo:

Compile WITHOUT -fopenmp and open these
programs in totalview. With and without:
1. Debugflag: -g

2. Optimisation: -00 and -03
Check for source code panel and possible
lines to set a break point.

get familiar with TotalView: Set a breakpoint, dive
into variables, add variables to your expression list,
step through your program

Change the number of iterations n after you
launched your program to n=10. Why does it not
work?

Compile your program again with a variable n.
Change its value to 10 after your program has been
launched.

Add an Action Point which evaluates the following:
print out the value of sum.

hint: add printf(“%d\n”, sum);

— Congratulations! You changed your program, did a
test drive, without recompiling it!

Add an Watchpoint to be notified when the pi is
changed.

