
Introduction to HPC 
Programming (08.128.612)

Peter-Bernd Otte, Helmholtz-Institute Mainz, 15.10.2019



Why you should be here
• Alternative Title: Boost your analysis

• New or existing analysis
• But: There is no automated way to do this.

• Main purpose of this course
• Give you the tools at hand to boost you analysis (less theory)
• Focus on MSc and PhD students

• What is so special about MSc/PhD? 
(no time, credit points irrelevant, already settled analysis program)

• Hands-on during lecture

• Alternatives to this lecture:
• “HPC” by Bertil Schmidt (08.079.090): standard lecture with problem classes (credit points 

included), no hands-on, not physics-analysis orientated
• Courses in Frankfurt or Stuttgart from PRACE community

• Motivation: 
There are some people saying, they found the use of C pointers more difficult than parallel 
programming with “MPI”.



OrganisaAonal issues
• Lecture times: Tuesdays, 14:15-15:45, Conference Room 1, HIM Building
• Optimised for target audience: 

• No home work or problem classes
• No compulsory attendance (please leave me a note, when you are unable to come)
• Learning Blocks (eg OpenMP, MPI) stretch over several lectures. 
• Universal: OpenMP and MPI can be used at any HPC computer worldwide. 

• Lecture nodes get published on course webpage
• https://www.hi-mainz.de/research/computing/lectures/

• Hands-on work: 
• 2 people share one computer (Linux, macOS, Windows)
• Please form clusters

• Homework: 
• Set up a Computer for next week‘s session with the following software: X-Server for 

macOS and Linux, MobaXterm for Windows (Alternatively Putty with Xming)
• Log into Himster 2 headnode once. Details: https://mogonwiki.zdv.uni-

mainz.de/dokuwiki/access
• Help any time: email or stop by my office.

https://www.hi-mainz.de/research/computing/lectures/
https://mogonwiki.zdv.uni-mainz.de/dokuwiki/access


Lecture Overview
• Typical lecture: 30’ talk + 60’ hands-on
• Up to date schedule always on course webpage

1. Introduction: (1 lecture, today)
1. Why HPC? 
2. Setup of a HPC cluster (in general terms / Mogon2 / HIMster 2 / Clover)

2. Programming:
1. Shared memory programming: OpenMP (3 lectures + hands on)
2. Distributed memory programming: MPI starter (3 lectures + hands on)

3. Debugging and Performance Analysis:
1. MPI parallel debugging with TotalView (1 lecture + hands on)
2. OpenMP verification with Intel Inspector XE (1 lecture + hands on)

4. Effective Usage of HPC for Single Core Analysis Programs (PANDA-Root, BOSS, etc.)
5. Survey dependent: 

• 4 remaining lectures 
(h5py, advanced MPI, optimising I/O pattern, special programming languages, …)



Literature
• An Introducgon to Parallel Programming, Peter Pacheco, 2011, 978-0-12-374260-5 

• Ebook freely available

• MPI-3.1: A Message-Passing Interface Standard
• C: The standard is really readable! hips://www.mpi-forum.org/docs/mpi-3.1/mpi31-report-book.pdf
• Python: hips://mpi4py.readthedocs.io/en/stable/

• Introducgon to High Performance Computer for Sciengsts and Engineers, Hager and Wellein, 978-1-4398-1192-4
• OpenMP: 

• Eine Einführung in die parallele Programmierung mit C/C++, Springer, Hoffmann and Lienhart
• Your favourite compiler manual

• courses at HLRS Stuigart or Frankfurt (and more at PRACE) (hips://www.hlrs.de/training/)
• Parallel Programming (*)
• Performance Opgmizagon and Debugging (*)
• Computagonal Fluid Dynamics and Parallelizagon
• Sciengfic Visualizagon

https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report-book.pdf
https://mpi4py.readthedocs.io/en/stable/


Basic Requirements

• Basic Python or C programming skills
• OpenMP only in C available

• Linux basics needed: 
• Bash: launch a program with different parameters, write script
• SSH: generate a key and log into HIMster2
• modules: list and load different modules
• gcc: compile with different optimisations
• (versioning with git)

• If not present, familiarise with it OR find the right team mate!



Lecture Today

• Organisational Points (10’)

• Motivation for Cluster Computing (10’)

• Cluster building blocks and our HIMster2 (10’)
• TOP 500 / Green 500

• Survey (10’) 
• Guided Tour HIMster 2 (20’)



Why HPC?



Why did we gather together? 

• Why HPC?

• Intense computational problem à single desktop computer not 
capable enough

• Run on a “super computer“
1. <2002: fast single core super computer
2. Since 2002: parallel systems as super computers

à Why parallel systems?



The Era of Moore‘s Law

• Moore's law (1965) =
observation number 
of transistors in a IC doubles 
every ~2a.
• Still valid, no natural law. 

Cramming More Components onto IC (1965): 
ftp://download.intel.com/sites/channel/museum/Moores_Law/Articles-
Press_Releases/Gordon_Moore_1965_Article.pdf or

https://ieeexplore.ieee.org/document/658762?tp=&arnumber=658762

Source: wikipedia

ftp://download.intel.com/sites/channel/museum/Moores_Law/Articles-Press_Releases/Gordon_Moore_1965_Article.pdf


The Era of 
Moore’s Law
• 1900-2000

• source: Wikipedia



Single-Core Performance

The single core-
performance increased  by 

• <2002: 50%/a 

• >2002: 20%/a

Speedup after 10a: 

• <2002: ~6000%

• >2002: ~600% 

Simply wait for the next 
CPU release is not enough 
any longer.

<2002: “Dennard scaling”: 
power density in silicon 
remains constant as gate size 
shrinks.

Smaler --> less power/gate à
higher f possible



Why not increasing frequency?

• Core speeds topped out at 2-4 GHz
• World record standard CPU: 8722.78 MHz with liquid nitrogen cooling 

(http://hwbot.org/benchmark/cpu_frequency/)

• Problem #1: cooling the chip

• Finding: “Dennard scaling” (constant power density) no longer valid
• No longer (since 2000’s) true since 90nm gate sizes (leakage current!)

• The two things that consume energy (CMOS gate):
1. switching state (1 ó 0) (10µW/MHz, prop with f^1.75)
2. leakage current (10nW / CMOS-Gate, anti-prop with Vdd and gate size)

• Increasing f: increase in power on same area à compensate this: 
shrinking gate sizes and lower Vdd
• But: smaller gates have higher leakage current. à New innovations needed. à

multi-cores at fixed f to gain performance

not gate

Power=P(Vdd, f)



Answer: multicores

perf. = f * instr./clock
power = perf^1.75 + const.



Moore‘s Law scaling with cores
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Future
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performance/wai and 
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Finally: Why specialised?
Comparison with distributed office computers at HIM
• FLOPS / computer (floating-point operation per second): 

• FLOPS = f × Ncores × Ninstr per cycle
• Intel E5-2670 (2,6 GHz, 8 cores): 2,6GHz × 8 × 8  = 166,4 GFLOPS

• Ncomputers: 25 offices / floor, 4 floors, 2 people / office, 1 computer / person = 200.
• 33TFLOPS (Clover = 106TFLOPS, HIMster2/Mogon2: 2801TFLOPS) cluster “for free”

Drawbacks:
• OS: Windows (20%), MacOS (20%), Linux (50%) other (10%) – all on a different version level
• Temperature in office rooms, closed window, 15th July: 0W = 29°C, with 400W = 50°C
• Network: 1GBit/s, Backbone 10GBit/s (HIMster2: 100GBit/s)

• 10GBit/s / 200 computers / 8 cores = 780kByte/s
• Compare bisection bandwidth (minimal accumulated bandwidth between any bisections of the 

network): fat tree ó binary tree

• Storage?
• No node checks, difficult to maintain, reduced availability

bisecgon bandwidth



Basic concepts



Parallel Programs: Worked out example (1)

Large task: grading 100 exams, 5 quesgons each

• Approaches:
• task-parallelism (grading exam quesgons: one core = one task = one quesgon)
• data-parallelism (grading exam: one core = one exam = data)

• Check, Coordinagon of work:
• Load balancing (assign all cores with equal load) (ó your brain while coding)
• Communicagon (ó Storage, Interconnect)
• Regular synchronisagon (waits!) (ó MPI, OpenMP)

• We will write explicitly parallel programs: 
• C language with extensions (OpenMP and MPI) or Python (MPI)



Parallel Programms: Worked out example (2)

• Task: calculate a large sum of numbers (eg for integration)

• 6,8,9 3,5,8 9,1,2 2,3,4
core 0 core 1 core 2 core 3
• local sums: 23 16 12 9

• collection: 39 21

• final sum: 50
Always check the scaling of your program.

time



Amdahl’s Law

• Given a program consisgng of a non-parallelisable 
and a perfectly parallelisable part

• Fracgon s of the non-parallelisable part:
T(p)=Tseq + Tpar(p) = T(1) * s + T(1) * (1-s)/p

• Speed-up: S(p) = (1+(1-s)/p)-1

• p à inf: S(p) = 1/s
• If S(p) > 1/s à “super-scaler speedup”, problem fit’s into 

CPU cache.

ideal (s=1)



More Conventions

• Concurrent compugng
• Single program, inside: mulgple tasks can be in progress at any gme.

• Parallel compugng
• Single program, inside: mulgple tasks cooperate closely
• tasks run on cores with a very high-speed interconnect, like inside a CPU

• Distributed compugng
• Many programs. These may need to cooperate with each other
• “loosely coupled”, but in reality: None of these programs may crash.



Shared System: Why two C extensions?

(a) Shared-Memory system:
• Each core can read/write each 

memory location
• Coordination of cores via shared-

memory locations
• Use OpenMP
• Small projects. HIMster2: up to 32 

cores/node

(b) Distributed-Memory system:
• Each core has private memory
• Cores explicitly sending messages for 

data exchange and coordination
• MPI
• Several nodes of a cluster

• Hybrid-Programming:
• OpenMP+MPI

(a) (b)



Trivial vs full usage of HPC

• Trivial parallelisation:
• Run your analysis several times (with different parameters)
• Out of the box with any non-interactively linux program
• Outcome / speedup unclear, but works very good for 10-100 jobs in parallel

• Full usage:
• No automated process to convert a single-core to a multi-core program
• Write parallel code: This is the content of this lecture starting next week.
• Use parallel programs: We can discuss such cases.



Building Blocks of a High Performance 
Computer (HPC)
• Basic building blocks are: 

1. compute nodes 
2. fast interconnect 
3. parallel file system

• Usage remotely, non interacgvely, through head node



Our HPC: HIMster II. Specs

• 320 Compute Nodes (252 theory, 64 experiment, 4 dev) in 8 racks
• dual socket Intel 6130 @ 2.1GHz (à 16 cores)
• 3GB RAM /core
• OmniPath 100 Gbit/s interconnect
• 400 GB local SSD scratch
• https://mogonwiki.zdv.uni-mainz.de/dokuwiki/nodes

• Parallel File System: 747TB Lustre volume (more is ordered)
• Software

1. organized in modules
• eg: module avail; module load devel/MariaDB/5.5.52-clientonly
• See: https://mogonwiki.zdv.uni-mainz.de/dokuwiki/setting_up_environment_modules

2. More via nfs mount: /cluster (no cvmfs)
3. Job Scheduler: SLURM (https://slurm.schedmd.com)

https://mogonwiki.zdv.uni-mainz.de/dokuwiki/nodes
https://slurm.schedmd.com/


HIMster II and Mogon II

• HIMster II and Mogon II form a compound state
• share login nodes, maintenance servers
• interconnect: OmniPath (100GBit/s)

• situated in the institute’s basement computing room, 750kW
• 2PFlops Linpack (20% contributes HIMster II)
• although calculation on all clusters is possible, use HIMster II
• account registration via PI of HIM or it@him.uni-mainz.de. 

University of Mainz account is mandatory (à HIM Admin will contact you).
• ssh pbotte@miil01-miil04 (only ssh-key login possible, login Mogon I first via password) 
• home directory: Shared with Mogon I, quota 300 GB
• More info: https://mogonwiki.zdv.uni-mainz.de/dokuwiki/ssh_from_outside
• Rules apply: https://www.en-zdv.uni-mainz.de/regulations-for-use-of-the-data- center/

mailto:it@him.uni-mainz.de
https://mogonwiki.zdv.uni-mainz.de/dokuwiki/ssh_from_outside
https://www.en-zdv.uni-mainz.de/regulations-for-use-of-the-data-%20center/


Comparison with its predecessor / do’s

• Per core memory bandwidth 
• HIMster II = 5.6 GByte/sec
• HIMster = 3.8 GByte/sec

• More memory per core
• HIMsterII has Skylake CPUs (eg AVX512 avail.) 
• Storage / Parallel File system: 

• NO BACKUP of data 
• Try to use large files: Source code should be in /home/ 
• Try not to put too many files into one directory on LUSTRE (less than 1k) 
• Try to avoid too much metadata load:

• DO NOT DO ls –l unless you really need it 
• In your scripts avoid excessive tests of file existence (put in a sleep statement between two tests say 30 

secs) 
• Use lfs find rather than GNU tools like find 
• Use O_RDONLY | O_NOATIME (readonly and no update of access time)



Batch System: SLURM. A quick start

• Introducgon and docu: 
• hips://mogonwiki.zdv.uni-mainz.de/dokuwiki/slurm_submit
• hips://slurm.schedmd.com/tutorials.html

• account to use: m2_himkurs
• Reservagon: himkurs
• Submit into parggon “parallel” and get an interacgve shell:

• srun --pty -p parallel -A m2_himkurs --reservagon kurstest bash -i
• Check what is running: squeue -h | grep pboie

• 1184615_79 parallel N203r001 pbo$e R 1:00:40 52 z[0367-0386,0403-
0413,0430-0450]

• SSH login into your occupied nodes possible: eg ssh z0367

https://slurm.schedmd.com/tutorials.html
https://slurm.schedmd.com/tutorials.html


TOP500 and Green500

• https://www.top500.org

• List of all supercomputers with their measured peak performance

Cores Rmax (Tflops) Rpeak Power (kW)

64 LvLiang Cloud Computing Center
China

Tianhe-2 LvLiang Solution - Tianhe-2 LvLiang, Intel Xeon 
E5-2692v2 12C 2.2GHz, TH Express-2, Intel Xeon Phi 
31S1P
NUDT

174,720 2,071.4 3,074.5 997

65 Universitaet Mainz
Germany

Mogon II - NEC Cluster, Xeon Gold 6130 16C 2.1GHz, 
MEGWARE MiriQuid Xeon E5-2630v4, Intel Omni-Path
NEC/MEGWARE

49,432 1,967.8 2,800.9 657

66 National Institutes of Health (NIH)
United States

Biowulf - Apollo 2000 Gen 8/9, Xeon E5-2680v4/E5-
2695v3 14C 2.4GHz, Infiniband FDR
HPE

66,304 1,966.1 2,491.4

https://www.top500.org/
https://www.top500.org/site/50546
https://www.top500.org/system/178464
https://www.top500.org/site/49102
https://www.top500.org/system/178930
https://www.top500.org/site/50698
https://www.top500.org/system/179027


HIMster compute nodes
8 racks



Cooling power 
for up to 750kW



Power and OmniPath Interconnect



Survey

• Your Name:

• University Username (not email address)

• Workgroup (if applicable, otherwise state your semester)
• Programming Language(s) (state your favourite first, then in descending order)

• Current Use Case (eg. Master/PhD thesis, give some short descripgon)
• Your Programming Skills? (beginner, expert, parallel code wriien?)

• Why are you aiending this course?


