HPC Programming

OpenMP, Part Il
Peter-Bernd Otte, 29.10.2019

Recap

OpenMP

Anatomy of a cluster computer

e Latencies:

Operation min overhead in
cycles

Hit L1 cache 1-10
[Elﬁ;]‘[Miss all caches 100
= System Memory 256 GB System Memory 256 GB System Memory 256 GB Page miss 100.000
(Data via 1000 (1ps)
interconnect)

Node interconnect

(all numbers are platform dependent)

Motivation

CPU bound
T = 1/N(cores)

* |deal:
some metric
scales with
1/N(cores)

1000

processing time per track [ns]

500

cpu threads

Graph with curtesey to Stephan Maldaner

Comparision: CPU or RAM bound

“CPU bound” . “RAM bound”
T = 1/N(cores) RAM bandwidth and/or

— 1500 latency limit reached

= °

~ []

s

g

g 1000 |

3

S s00| 8

"8
oy .
"'""lllllalaillnlll!lul
%5 0 5 1 15 20 25 30 35
_cpu threads

Graph with curtesey to Stephan Maldaner

Comparision: CPU or RAM bound

e Same algorithm, but problem with thread non local memory

solution: fix threads to
cores

— see chapter:
“common pitfalls”

7000 . . : . : : I
[]
6000 | ° o ®
%, °
- 88 8
c 5000} ®e
—_— L] o
% °
E [)
© 4000} o8 o0° %
g o o o
= o % o
o 3000 ce, ! .
= []
v o oo .:.o.o 0'§3°°
8 ' 0® oo % $o
2 2000 gt T e -
: ot
{]
L ¢
1000 | 8 X
0 | | | | | 1 |
-10 0 10 20 30 40 50 60

cpu threads

Graph with curtesey to Stephan Maldaner

Comparison OpenMP / MP]

MPI (Message Passing Interface, later

OpenMP this course)
* shared memory directives (compile time) » software library (run time)
* to define work decomposition e user defines:

* no data decomposition
(data in shared memory)

* synchronisation is implicit

e distribution of work & data
* communication (when and how)

Possible speedup:

. _ , Possible speedup:
* memory limited: Total bandwidth / single

core bandwidth = 4 (hardware dependent) * Per node limits: see OpenMP
e CPU limited: Number cores (+ possible cache | * RAM/CPU limited: utilisation of N nodes
effects) * Storage limited: ? (use node local scratch)

e storage limited: do not use

OpenMP: Execution Model (Il)

* Begin execution as a single process (master thread)

* Fork-join of parallel execution
1. Start of 1% parallel construct: Master thread creates N threads

2. Completion of a parallel construct: threads synchronise (implicit barrier)
3. Master thread continues execution

* At next parallel construct: work balancing with existing threads

OpenMP: Parallel Region Construct + Syntax

#pragma omp parallel [clause [, clause]]

// emp end parallel

* block = to be executed by multiple threads in parallel. Each
code executes the same code.

* Clause can be (“data scope”): Good practice:

block

always declare all
variable either in
private or shared {0

private (list) € variables in list private to each thread & not initialised,
standard for loop variables

shared (list) € variables in list are shared among all thread, standard : !
firstprivate, lastprivate, threadprivate, copyin, reduction avoid surprises (race

set number of threads: num_threads(N) Inone)

Declare private var’s

inside parallel regions

Lessons learned from exercises:

e Python exercise 1 (,Numba“):
* installation of python packages in home directory (,virtual environment®)
* beneficial for quick results (JIT, parallelisation)

 C+ OpenMP, exercise 1 (“Hello World”):

* 1t OpenMP program, but no speedup
* With OpenMP -> “no free lunch”

 C+ OpenMP, exercise 2 (“Parallel Region”):
* Multiple threads, output order undetermined
* First race condition when having shared variables

Introduction OpenMP OpenMP

Hardware Anatomy

Motivation

Programming and Execution Model
Work sharing directives

Data environment and combined constructs

o R N e

Common pitfalls and good practice (“need for speed”)

Control Structures - Overview

* Parallel region construct
* parallel

* Worksharing constructs
 for
« sections
* task
 single
* master

* Synchronisations constructs
e critical

Comments:
* Defines work load among threads

* worksharing & sync constructs do not launch
new threads

» parallel construct creates a team of threads which
execute in parallel
e worksharing comes with implicit barrier
(threads wait until complete work finished):
* none on entry
* normally one at the end

OpenMP: for Directive (1)

Allows the iteration

Parallelises the following for loop
* in canonical form = see next slide.
* loop iterations: all independent!

count (of all associated
loops) to be computed
before the (outermost)

loop is executed.

e Within parallel region

 #pragma omp for [clause ..] new-line
for-loop(s)
//end of for loop

)

* OR: Combined parallel worksharing constructs: “parallel for’
#pragma omp parallel for new-line
for-1loop(s)
//end of for loop + end of parallel region

OpenMP: for Directive (2)

e Canonical loop form (see 2.6 in “OpenMP Application Programming Interface”, Nov 2015)

* Credo: number of iterations computable at start of loop

» for (initialize; test; increment) { ... }
* initialize, test and increment: loop invariant expression

Initialize: var = Ib, e.g. “inti = 0"
* var =loop variable
Test: var operator b
* operator is one of the following: <, <=, >, >=

Increment: (integer expression) e.g. i++, ++i, i=i+5, ...

¢® var
* must not be modified in the loop body
* integer (signed or unsigned)

* Examples:
 wrong: for (inti=0;i!=n;i++)
e canonical: for (inti=0; i< n;i++)

OpenMP: for directive (3)

#pragma omp for [clause ..] new-line
for-loop(s)
//end of for loop

Will be discussed and

. Clausef e (st used in next lecture
« private (lis

* reduction (op: list)

* collapse (n) _ _
(n=const.: iterations of following n nested loops
are collapsed into one larger iteration space)

* schedule (type, chunk)
(how the work is divided among the threads)

* nowait
e .. (see APl section 2.7.1)

* At the end of each for (unless nowait specified): implicit barrier
(barrier? see next slide)

OpenMP: for Directive (4)

* double res[30];
#pragma omp parallel private(i) shared(h)

{

h=3;
#pragma omp for

for (int i=0; i< 30; i++) {
res[i] = f(i);
}

}// OMP End parallel

OpenMP: Barrier

team of threads

* barrier = all threads in a team wait until all threads
reached barrier

* Implicit barrier
* entry and exit of parallel constructs v

» exit of all other control constructs (except: nowait clause)

e Explicit barrier
e critical directive
e single directive

- see later

OpenMP: sections directive

e each block: independent
» each block is executed only once by one thread.
* order of execution is implementation dependent

?pragma omp parallel
#pragma omp sections

#pragma omp section

é /*block 1*/ a=..; b=..; }
pragma omp section

i /*block 2*/ c=.; d=..; }
praEma omp section

{ /*block 3*/ e=..; f=.; }

} // end of omp sections
} // end of omp parallel

s

Comparison: sections directive <~ PThreads

e C++11 standard library: more flexibility, more things can go wrong.

#include <iostream>
#include <thread>

void function_1() { Pitfalls! Check for

//5ome work * private and shared variables
 cache coherence effects

soid function 2() {
//some work

}

int main() {
std: :thread thread_lgfunction_l ; /*Thread constructor */
std: :thread thread_2(function_2); .
thread_l.]o;ngg; /*forces main ﬁread to wait for threadl/2*/
thread 2.jo0in(); /*otherwise undefined behaviour *
return 9;

g++ pthreadtest.cpp -pthread -std=c++11 -o pthreadtest

a8

main

OpenMP: task directive concept

 parallelises several tasks
* eg. traverse a linked list with a recursive algorithm, Fibonacci numbers
* length not known at beginning (parallel for not possible)

* concept:

1. thread generate tasks
2. team of thread executes tasks

* Note:
 tasks can be nested (task may generate a task)
* all tasks can be executed independently
» overhead(for) < overhead(tasks)

OpenMP: task directive syntax & example

* Defines a task within parallel regjon:) Example:
#pragma omp task [clauses] new-line
block #pragma omp parallel num_threads(2)

{
* clauses: #pragma omp single only one thread
. Untied { gr‘intf(“E = “); paCkageS taSkS

* default (shared | none | private | firstprivate) pragma omp task

+ prvate (s soban oot
 firstprivate (list) ppp§ntf(”pc/\2 "); Tasks are executed at task
* shared (list) #pragma omp taskwait execution point, add:

printf(“ Wow “);

* if (scalar expression) #pragma omp taskwait

} .
» Optional: taskwait } // end of parallel region

Specifies a wait on completion of all direct child tasks
generated since beginning of current task (not to
“descendants”) Output (without and with taskwait):

#pragma omp taskwait new-line
1. “E=Wowmc”*2” or”E=WOW c*2 m”

. . _ _ 2. "E=m c"2 Wow” or”E = c"2 m Wow”
* OpenMP 4: Specifies to wait on completion of child
tasks and their descendant tasks:
#pragma omp taskgroup

OpenMP: master Directive

°* master
* section of code executed only by the master thread
* no implicit barrier upon completion or entry

* Syntax:

#pragma omp master newline
block

e benefit? =2 next slide

OpenMP: Single Directive

* single
 section of code executed by single thread
* not necessarily the master thread
* implicit barrier upon completion

* Syntax:

#pragma omp single [clauses] newline
block

* Good practice:
Reduce the fork-join overhead by combining
 several parallel parts (for, task, sections)

e sequential parts (single, master)
in one parallel region (parallel)

C rltl Ca ‘ d | re CtIVe Difference to single directive?

* Explicit barrier Example: count 0’s in matrix:

* Enclosed code
* executed by all threads
* restricted to only one thread at a time

int_matrix[rows][cols];

bool number_of_zeros = false;
#Eragma omp parallel default(none)
? ared(matrix, number_of_zeros)

* Syntax: #pragma omp for .
#pragma omp critical [(name)] new-line ‘cogorlr("icnfc‘o"c“oi f’e?"?oi :O‘ggis?ogﬂé ‘
block if (matrix[row, col] == @) {

#pragma omp critical
* A thread waits at the entry of critical region { number_of_zeros++; }
until no other thread in the team is } }
executing a region with the same name
* If (name) is omitted: All regions belong to the
same undefined region name.

}
printf(“The matrix has %d ©’s.”,
number_of_zeros);

OpenMP: single < critical

° gj . int a=0, b=0;
Smgle'. _ #pragma omp parallel num_threads(4)
* section executed by single thread {
#pragma omp single

* only once iy
ey #pragma omp critical
e critical: b O
 section executed by one threadat } . o o .
3 time printf("single: %d critical: %d", a, b);

 num_threads() times

result:
single: 1 critical: 4

OpenMP: cancel and cancelation point -
directive

* Example: check matrix for 0 entry:

bool has_zero = false; .
#pragma omp parallel default(none) shared(matrix, has_zero)

#pragma omp for
for (int row = @; row < rows; row++)
for (int col = 0; col < cois; col++) {
if (matrix[row, col] == 0) {
#pragma omp critical
ﬁ has_zero = true; %
) pragma omp cancel for

!

) #pragma omp cancellation point for

¥

Set up your workbench

e Read the latest hints online:
https://gitlab.rlp.net/pbotte/learnhpc/tree/master/openMP

Basic concept:

* Connect 2 times to Mogon2 / HIMster2 via SSH
1) connection for your editor (gedit, vi, vim, nano, geany, ...)
2) second connection for compiling and running on compute node:
srun --pty -p parallel -N 1 --time=02:00:00 -A m2_himkurs --reservation=himkurs bash

* (no analysis on the head node!)
* Run with: OMP_NUM_THREADS=4 ./pi
* Download the files:

1) first time: git clone https://gitlab.rlp.net/pbotte/learnhpc.git
2) only update: git pull

* Check for directory: openMP/exercise3/

Hints:
* “git pull” does not work? To reset your git repository to the master: “git reset —hard”
* Check compiler version: cc -v

* Run: OMP_NUM_THREADS=4 ./pi
or export OMP_NUM_THREADS 4

* Possible to check reservation with: squeue -u SUSER

https://gitlab.rlp.net/pbotte/learnhpc/tree/master/openMP
https://gitlab.rlp.net/pbotte/learnhpc.git

Exercise 3: worksharing directives

Learning objectives:

n «u

Use of “for”, “critical” and “single” directive

Steps:

1.

Use the code from exercise 2 and compile as
openmp program (-fopenmp with cc) and run with
OMP_NUM_THREADS=4

Add (a) parallel region and (b) for directive and
compile. Run with OMP_NUM_THREADS=1.
Expected pi value: correct.

Run with OMP_NUM_THREADS=2. Expected pi
value: wrong. Repeat also with different
OMP_NUM_THREADS values. Why is it
unpredictable? (Where is the race condition?)

Add private(x) clause, compile and run with
OMP_NUM_THREADS=2 aEain. Repeat also with
different OMP_NUM_THREADS values. Expected pi
value: still unpredictable. Why?

5. Add critical directive around sum statement, compile

and run. Test different OMP_NUM_THREADS several
times in a row,

1. how is the speedup with increasing OMP_NUM_THREADS?
(why do e.g. 4 threads take longer than 27?)

2. compare results. Are the results the same to the last digit?
Why not?
Optimize: Move critical region outside loop. Run

several times with different OMP_NUM_THREADS.
How does

1. speedup
2. and precision evolve?

Modify exercise 1: Use a single construct to let only
one thread print out the number of threads in the
team.

Optional Exercise 4: Fibonacci Numbers

Write a parallel program that calculates a
Fibonacci Number in a recursive
implementation: F(n) = F(n-1) + F(n-2)

Comments:

* binary tree of tasks
* F(n) =F(n-1) + F(n-2)

* inefficient O(n?) recursive implementation
(but excellent example)

* traversed using a recursive function

* taskwait: A task cannot complete until all
tasks below in the tree are complete
* |ocal variables: x, y = private to current task

e declare as shared on child tasks to
prevent firstprivate copies

int fibo (int n) {

}

int main

int x,y;
if (n < 2) return n; '
#pragma omp task shared(x) if(n>30)
x = fibo(n-1);
#pragma omp task shared(y) if(n>30)
% = fibo(n-2); _

pragma omp taskwait
return Xx+y;

Stop creating
tasks at some
level in the tree

int NN£%@§
?pragma omp parallel

#pragma omp master
fibo(NN);

OpenMP: References

* OpenMP Application Programming Interface, Examples
Version 4.5.0 — November 2016
https://www.openmp.org/wp-content/uploads/openmp-examples-
4.5.0.pdf

https://www.openmp.org/wp-content/uploads/openmp-examples-4.5.0.pdf

