
HPC Programming
Message Passing Interface (MPI), Part IV

Peter-Bernd Otte, 10.12.2018

Introduction MPI

1. Overview / Getting Started

2. Messages & Point-to-point Communication

3. Nonblocking Communication
4. Error Handling

5. Groups & Communicators
6. Collective Communication

7. MPI I/O

8. MPI Derived Datatypes
9. Common pitfalls and good practice (“need for speed”)

10. Debugging and Profiling

Recap

MPI: MPI_Comm_split

• Creates new communicators based on colors

• int MPI_Comm_split(MPI_Comm comm, int color, int key,
MPI_Comm *newcomm)
• ordering in new group:

• key == 0 à as sorted in old
• key != 0 à according to key values

• one member group: color = MPI_UNDEFINED

• Example:
MPI_Comm newcomm;
MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
mycolor = my_rank/3;
MPI_Comm_split(MPI_COMM_World, mycolor, 0, &newcomm);

MPI_Comm_rank(newcomm, &my_new_rank);

0

2
0

3
1

1
0

4
1

5
2

MPI_COMM_WORLD
communicator

Tracker
communicator

EM Calorimeter
communicator

global rank
rank in sub-comm

Recap

MPI: MPI_Reduce

• Reduces values on all processes to a
single value
(eg global sum)

int MPI_Reduce(
void *sendbuf /*in*/,
void *recvbuf /*out*/,
int count /*in*/,
MPI_Datatype datatype /*in*/,
MPI_Op operator /*in*/,
int dest_process /*in*/,
MPI_Comm comm /*in*/)

• hints:
• with count>1, MPI can operate on arrays
• sendbuf and recvbuf need to different

(no aliasing!)

Recap

MPI: P2P ó Collective Communication

• ALL processes in communicator must call SAME collective function at the same time.

• Arguments in all ranks must fit:
• eg. same dest_process, datatype, operator, comm
• depending on function

• Only rank dest_process may use recvbuf (but all ranks have to provide such argument)

• MPI_Reduce calls matched solely on:
• the communicator and
• the order on which they are called.
• No helping tags or sender id available.

Recap

MPI: Broadcast and Scatter

Broadcasts the same message to all other processes of
the communicator

Recap

Scatter: Sends data from one process to all
other processes in a communicator

Gathers (=inverse scatter):

Introduction MPI

1. Overview / Getting Started

2. Messages & Point-to-point Communication

3. Nonblocking Communication
4. Error Handling

5. Groups & Communicators
6. Collective Communication

7. MPI I/O

8. MPI Derived Datatypes
9. Common pitfalls and good practice (“need for speed”)

10. Debugging and Profiling

• Standard (POSIX): each process
writes to a single separate file on
scratch(!) device

• Typical situation: analysis
framework

• parallel à scales!

• collection of all these single files
à serialisation or worse

• many files à bad for meta data
server

Motivation: MPI I/O 1/4

rank 0

file 0

rank 1

file 1

rank 2

file 2

rank 3

file 3

node 0 node 1 node 2 node 3

central
permanent

storage

file 0file 0file 0file 0

• Legacy: only single rank
reads/writes

• Typical situation: apps recently
parallelised, OpenQCD

Why not ideal:
• rank 0: serial access and

broadcasts
à worst-case scenario

• rank 0: reads only a fraction of a
file
à bad for meta data server

Motivation: MPI I/O 2/4

rank 0

rank 1 rank 2 rank 3

node 0 node 1 node 2 node 3

central
permanent

storage

file 0file 0file 0file 0

• Speed up with cooperation and
parallelism

MPI IO:
• simultaneous access cooperation

• single file

• provides replacement function
for POSIX

Motivation: MPI I/O 3/4

rank 0 rank 1 rank 2 rank 3

node 0 node 1 node 2 node 3

central permanent storage
with file striping

file 3file 2file 1file 0

MPI IO

Motivation: MPI & MPI IO 4/4

MPI I/O is based on:

• MPI & parallel FS (à fast)

• handle read/write accesses like sending/receiving of messages

parallel I/O requirements analogy on MPI

collective file operations MPI communicators

non-contiguous access MPI derived datatypes

nonblocking operations MPI functions with immediate return in
combination with Wait.

not yet discussed in
this lecture

MPI IO principles

• MPI file contains elements of a single MPI datatype (“etype”)

• rank file access provided by access templates

• read/write routines in MPI IO: nonblocking / blocking and collective / individual reads
• file pointers: individual and shared

• automatic data conversion in heterogenous systems

MPI: Access possibilities

• Array of data in file

• 3 ranks processing this file
1. full view on file for every rank (like standard POSIX)

with
MPI_File_write_at()

2. reduced view on file for every rank with
MPI_File_set_view() and
MPI_File_write()

d0 d1 d2 d3 d4 d5
d0 d1 d2 d3 d4 d5

rank 0 rank 1 rank 2

d0 d1 d2d3 d4 d5

rank 0 rank 1 rank 2

file view rank 0..2

view rank 0 view rank 1 view rank 2

MPI IO: Opening a file

int MPI_File_open (
MPI_Comm comm,
ROMIO_CONST char *filename,
int amode,
MPI_Info info,
MPI_File *fh /*out*/)

• collective within communicator.
• all processes in comm. call function with same arguments (filename, amode)
• process-local files with MPI_COMM_SELF as communicator

• returns a file handle
• representing the file, communicator and the current view (see next slides)

• default:
• displacement = 0, etype=MPI_BYTE à each process has access to whole file (”slide before: full view”)

• No info = MPI_INFO_NULL, otherwise provide timeouts, buffer sizes or stripe factors here.

MPI IO: Access Mode

• remember: same amode argument on all processes (collective!)

• combe these arguments bit wise à Operator | (better not +)

• Be as restrictive as possible to allow for storage optimisation
Constants

MPI_MODE_APPEND all file pointers set to end of file

MPI_MODE_CREATE Create the file if it does not exist.

MPI_MODE_DELETE_ON_CLOSE

MPI_MODE_EXCL Error creating a file that already exists.

MPI_MODE_RDONLY Read only.

MPI_MODE_RDWR Reading and writing.

MPI_MODE_SEQUENTIAL only sequential access, eg: tapes

MPI_MODE_WRONLY Write only.

MPI_MODE_UNIQUE_OPEN file not opened concurrently

caution: any
following call of

MPI_FILE_SET_VIEW
will reset this to 0

MPI IO: Closing a file

• collective function

int MPI_File_close(MPI_File *fh)

MPI IO: File Deletion

1. int MPI_File_delete(
ROMIO_CONST char *filename,
MPI_Info info)

• file need not be currently opened

2. Provide argument „amode = MPI_MODE_DELETE_ON_CLOSE“ in MPI_File_Open

MPI IO: Writing to file with explicit offset

• (needed for exercise 7)
• int MPI_File_write_at(

MPI_File fh,
MPI_Offset offset,
ROMIO_CONST void *buf,
int count,
MPI_Datatype datatype,
MPI_Status *status)

• buffer includes min count elements of type datatype

• writes count times elements from buffer to to the file
• starting at offset * sizeof(datatype) from begin of view

d0 d1 d2 d3 d4 d5

rank 0 rank 1 rank 2

file view rank 0..2

MPI IO: Reading from a file with explicit
offsets
• int MPI_File_read_at(

MPI_File fh,
MPI_Offset offset,
void *buf,
int count,
MPI_Datatype datatype,
MPI_Status *status)

• read count elements of datatype

• starting at offset * sizeof(datatype) from begin of view

• EOF is reached, once amount of data read < count
• use MPI_Get_Count(status, datatype, received_count)
• note: EOF is no error

MPI IO: Individual file pointers 1/2

• int MPI_File_read(MPI_File fh, void *buf, int count, MPI_Datatype datatype,
MPI_Status *status)

• int MPI_File_write(MPI_File fh, ROMIO_CONST void *buf, int count, MPI_Datatype
datatype, MPI_Status *status)

• same functions as those functions with “_at”, except:
• each process has it’s private current value of file offset (“file pointer”)
• after access, private offset updates:

• private offset points to the next datatype of the last accessed.

MPI IO: Individual file pointers 2/2

• int MPI_File_seek(MPI_File fh, MPI_Offset offset_new, int whence /*Update
mode*/)
• Update mode = MPI_SEEK_SET à set private file offset to offset_new
• MPI_SEEK_CUR à advance private file offset by offset_new
• MPI_SEEK_EOF à set private file offset to EOF + offset_new

inquire offset:
• int MPI_File_get_position(MPI_File fh, MPI_Offset *offset)

• int MPI_File_get_byte_offset(MPI_File fh, MPI_Offset offset, MPI_Offset *disp)
• disp = absolute byte position of offset (nonnegative integer)

• To convert an offset into byte displacement (needed eg for a new view)

MPI IO: File views 1/2

• Each process gets a separate view of the file, collective
operation (necessary for exercise 8)

• Defined by (displacement, datatype, filetype)
• Standard = (0, MPI_BYTE, MPI_BYTE) = linear byte stream

• can be changed during runtime
• int MPI_File_set_view(

MPI_File fh,
MPI_Offset disp,
MPI_Datatype etype,
MPI_Datatype filetype,
ROMIO_CONST char *datarep /*see next

slide*/,
MPI_Info info)

• Get view via MPI_File_get_view()

d0 d1 d2d3 d4 d5

rank 0 rank 1 rank 2

view rank 0 view rank 1 view rank 2

d0 d1 d2 d3 d4 d5

MPI IO: File views 2/2

• Worked out example, create MPI_Type filetype first:

etype = MPI_CHAR;
ndims = 1; /*dimensions of following arrays*/
array_of_sizes[0] = 3;
array_of_subsizes[0] = 1;
array_of_starts[0] = my_rank;
MPI_Type_create_subarray(ndims,

array_of_sizes, array_of_subsizes,
array_of_starts, MPI_ORDER_C, etype,
&filetype);

MPI_Type_commit(&filetype);
MPI_File_set_view(fh, 0, etype, filetype,…);

d0 d1 d2 d3 d4 d5

d0 d1 d2d3 d4 d5

rank 0 rank 1 rank 2

view rank 0 view rank 1 view rank 2

MPI IO: Data representation

• native:
• data in file = data in memory
• no type conversions (no loss of precision and I/O performance) on homogenous systems
• not possible on heterogenous systems
• no guarantee by MPI to mix C and Fortran

• internal:
• implementation dependent, for heterogenous systems

• external32
• follows standardized representation (IEEE)
• all input/output according to “external32” representation à interoperable between

different MPI impl.
• due to type conversions from/to native: data precision and I/O performance is reduced
• can be read/written also by non-MPI programs

our choice

Introduction MPI

1. Overview / Getting Started

2. Messages & Point-to-point Communication

3. Nonblocking Communication
4. Error Handling

5. Groups & Communicators
6. Collective Communication

7. MPI I/O

8. MPI Derived Datatypes
9. Common pitfalls and good practice (“need for speed”)

10. Debugging and Profiling

Most common MPI pitfalls:

• Starting multi-core program: do not copy or fork your code, improve existing.

• FIRST: optimise single core performance (better algorithm)

• efficiency of MPI application-programming is not portable
à optimize for every system needed (when aiming for highest speeds)

• Most Common pitfalls:
• Deadlocks and serialization
• Late sender / late receiver

• further hints:
• Overlap communication and computation (using “i”-send/-recv)
• Global communication involving many or all MPI processes include costly synchronizations.

• combine such reductions to reduce overhead

• try to share huge buffers instead of copying
• Check resources, try to avoid local swap à use more machines, less ranks / threads per node

MPI optimisation: Advanced

• Contention:
• miss ratio senders / receiver,
• low bisectional bandwidth between nodes,
• non ideal network routing

• Non optimal domain decomposition (slicing of your detector/matrix):
• try different data decomposition

(divide the problem differently, “slices with smaller surfaces)
• too much communication overhead,
• as many ranks as possible on a single node à avoid network

• On multi socket systems: sending rank should be on core in hardware,
which is closest to network link

• Check for load imbalances, use tuning tools
socket

0
socket

1
net

MPI optimisation: Binding
• Binding processes and their threads prevents the OS scheduler from moving them across the available CPU

sockets or cores.
• Memory-bound MPI application with one MPI process per socket

• $MPIEXEC $FLAGS_MPI_BATCH --map-by ppr:1:socket --bind-to core a.out
• Compute-bound MPI application with as many processes per node as there are cores (try to use

HyperThreading)
• $MPIEXEC $FLAGS_MPI_BATCH --bind-to core --map-by core a.out

• MPI application with n processes per socket (n < #cores)
• MPI applications, that are neither completely compute- nor completely memory-bound, try to run them

with less processes per socket than cores available:
• $MPIEXEC $FLAGS_MPI_BATCH --map-by ppr:2:socket --bind-to core a.out

number of processes per socket ---^
• Examining the Binding,

• OpenMP: --report-bindings
• MPI: srun --cpu-bind=verbose / mpirun --report-bindings
• depends on MPI implementation

MPI optimisation: Binding

mpirun -n 4 --report-bindings -bind-to core ring-sub

[login22:17413] MCW rank 0 bound to socket 0[core 0[hwt 0-1]]: [BB/../../../../../../../../..][../../../../../../../../../..]

[login22:17413] MCW rank 1 bound to socket 1[core 10[hwt 0-1]]: [../../../../../../../../../..][BB/../../../../../../../../..]

[login22:17413] MCW rank 2 bound to socket 0[core 1[hwt 0-1]]: [../BB/../../../../../../../..][../../../../../../../../../..]

[login22:17413] MCW rank 3 bound to socket 1[core 11[hwt 0-1]]: [../../../../../../../../../..][../BB/../../../../../../../..]

MPI: Possible sources of errors
1. Hardware (CPU, RAM, network, storage) free of errors?
2. Check: error free single core program?

• program hangs
send / receive do not match (sender it, communicator, tag, etc.) à verify parameters

• MPI_Send crashes:
Buffer address correct? Still correct? eg OpenMP task gets executed with delay (use “omp taskwait”)

• MPI_Recv crashes: MPI library tells, msg is larger than recv buffer
message from correct sender received? Did tags match? wrong message order? à use unique tag

• received message data is wrong
Send buffer has been modified (buffered send) before sent / Received buffer has been accessed before
arrival of data

• Using OpenMP and MPI in parallel:
à Tell mpirun about it, use correct MPI multi-thread level (eg MPI_THREAD_SERIALIZED or
MPI_THREAD_MULTIPLE)

MPI I/O Performance

• Best practices of using MPI I/O:
• make as few file I/O calls in general
• in order to create big data requests and
• have as few meta-data accesses (seeks, query or changing of file-size).

• Change MPI_Info key-values, according to your needs, eg:
• MPI_Info info;

MPI_Info_create(&info);
/* Enable ROMIO's collective buffering */
MPI_Info_set(info, "romio_cb_read", "enable");
MPI_Info_set(info, "romio_cb_write", "enable");
MPI_File_open (MPI_COMM_WORLD, fn, MPI_MODE_CREATE | MPI_MODE_WRONLY, info, &fh);

General File Access Hints
• Bad I/O performance due to:

• Accessing that same portion of the file à locks
• Other i/o in parallel
• random accesses
• datasize(i/o requests) << filesystem block size
• files too small / too many files / too many open&closes à metadata servers overloaded

• Avoid data access:
• Recalculate when it’s faster
• group small operations to larger chunks
• Reduce data accuracy, possible? à less data!

• Helpful:
• Use parallel I/O libraries: MPI I/O, HDF5, etc. and use their non-blocking MPI I/O routines
• large and contiguous requests
• Use derived datatypes to support MPI I/O in its work
• Open files in the correct mode (eg only readonly) to allow for optimisations
• Not too many open files at the same time
• flushes only when absolutely necessary.
• Create files independent of the number or processes (easier post processing and restarts with different rank size)

Optimisation

• Good read for further studies:
• Hager, Wellein: “Introduction to High Performance Computing for Scientists and Engineers”, CRC Press

Introduction MPI

1. Overview / Getting Started

2. Messages & Point-to-point Communication

3. Nonblocking Communication
4. Error Handling

5. Groups & Communicators
6. Collective Communication

7. MPI I/O

8. MPI Derived Datatypes
9. Common pitfalls and good practice (“need for speed”)

10. Debugging and Profiling

topics of future
lectures

MPI: Profiling Glimpse

• See where time is spent

• Identify idle periods

Exercise 7:

Learning objectives:

• first usage of MPI IO and MPI_File_write_at()

Steps:

1. Clone the skeleton from lecture repository:
https://gitlab.rlp.net/pbotte/learnhpc

2. Each rank writes 5 times its rank number into a
common file (do not use more than 9 ranks). The
output should look like (with 4 ranks):
01230123012301230123

Hints:

• offset = my_rank + Comm_Size * i, i=0..4

• Each process uses the default view

• To write numbers as ASCII characters use
buf = '0' + (char)my_rank;

• You can use “cat FILENAME” to check your written
output.

• Real world hint: Your home directory is not a
parallel FS. For full speed use /lustre/…

https://gitlab.rlp.net/pbotte/learnhpc

Exercise 8:

Learning objectives:

• Write to a file with MPI_File_set_view

Steps:

1. Clone the skeleton from lecture repository:
https://gitlab.rlp.net/pbotte/learnhpc

2. Achieve the same result as in exercise 7 but make
use of MPI_Type_create_subarray,
MPI_File_set_view and MPI_File_write

https://gitlab.rlp.net/pbotte/learnhpc

