SPECTROSCOPY OF MULTI-STRANGE HYPERNUCLEI

Darmstadt, June 8, 1998

J. Pochodzalla

M. Bleicher, L. Gerland, B. Kopeliovich, U.Lynen, L. Neise, B.Povh, H.W. Siebert, S. Soff, H. Stöcker

Hadron-Antihadron MPI-HD Production in pp Collisions

Kaidalov & Volkovitsky

quark-gluon string model

Present Status of MPI-HD Multi-Strange Hypernuclei

Only 6 candidates for multi-hypernuclei are observed

 $^{10}_{\Lambda\Lambda}$ Be

1963: Danysz *et al*.

1966: Prowse

1991: Aoki *et al*.

1991: Aoki et al.

 $^{6}_{\Lambda\Lambda}$ He $^{10}_{\Lambda\Lambda}$ Be or $^{11}_{\Lambda\Lambda}$ Be

3 non-mesonic decays

but...

- 1989: Dalitz et al.
- ? Danysz event o.k. but double mesonic decay surprising
- ? Prowse event questionable
- 1991: Dover et al.
- ? Aoki event possibly $^{13}_{\Lambda\Lambda}B$

J. Pochodzalla $\Xi^{-}(dss)\mathbf{p}(uud) \mathbf{p} \Lambda(uds)\Lambda(uds)$

- "cool" production: energy release $\Delta E= 28 \text{ MeV}$
- Ξ⁻⁺¹²C: T. Yamada and K. Ikeda, PRC 56, 3216 (1997)

TABLE VIII. Calculated production rates per Ξ (R/ Ξ) averaged over the absorption rates in the case of $V_{0\Xi} = 16$ MeV.

MPI-HD

Channel	R/王 (%)	
$^{12}_{\Lambda\Lambda}\text{B}+n$	1.48	
$\frac{12}{\Lambda\Lambda}$ Be+p	0.99	
$^{11}_{\Lambda\Lambda}$ Be+d	1.81	
$^{10}_{\Lambda\Lambda}$ Be+t	0.02	
$^{9}_{\Lambda\Lambda}$ Li+ α	0.02	
$^{6}_{\Lambda\Lambda}$ He+ ⁷ Li	0.23	
$^{5}_{\Lambda\Lambda}$ H+ ⁸ Be	0.20	
$^{9}_{\Lambda}\text{Be}+^{4}_{\Lambda}\text{H}$	0.07	
${}^{8}_{\Lambda}\text{Li} + {}^{5}_{\Lambda}\text{He}$	0.04	
$^{12}_{\Lambda}\text{B} + \Lambda$	1.08	

total probability $p_{\Lambda\Lambda} \approx 0.05$

8

individual states a factor of ≈ 10 lower

strangeness exchange

Btypical Ξ recoil momentum > 460 MeV/cstorage of K- not possible ($c\tau$ = 3.7 m)KEK-E176:80 stopped Ξ ß E373:1000 stopped Ξ AGS-E885:9000 stopped Ξ

Production of low-momentum **Ξ**⁻

- J. Pochodzalla MPI -HD
- $\Xi^-\overline{\Xi}^+$ production close to threshold (p_{TH} = 2.62 GeV/c)
- de-accelerate Ξ^- by Ξ^- p elastic scattering

signature:

- $\overline{\Xi}^-$ with large momentum
- Ξ^- capture and secondary decay

Ξ⁻ Properties

Tracking of Ξ⁻

 several closely spaced layers of small micro-strip tracking detectors (diamond, Si) close (5mm) to the primary target resp. beam

• Ξ decay during cascading (~10⁻¹²s) small (Batty 95)

8 tracking and capture probability of $p_{CAP} \approx 0.15$ feasible

Production Probability for low-momentum Ξ^-

- $\Xi \overline{\Xi}$ cross section ~ A^{2/3}
- $\overline{\Xi}$ absorption $\sigma = 0.8 \cdot \sigma_{ABS}(\overline{p}p)$
- elastic scattering $\sigma_{\text{EL}}\text{=}10\text{mb}$

J. Pochodzalla MPI -HD

Sven Soff et al. (Frankfurt)

• 1000 $\overline{\Xi}$ or Ξ at b=0 with p=1.5 GeV/c

emission probability of $\overline{\Xi}$ at forward angles (\hat{U} large momenta) ~ 0.2% probability for low momentum $\Xi \sim 40\%$ total probability p_{500} = 0.002 \cdot 0.4 \cdot A^{2/3} ~ 0.004

Schematic Setup

beam: 3 GeV/c, Ø £ 1mm internal target (gas-jet e.g. Ne) width 1mm diamond strip detector block: 26 mm thick; $\theta_{LAB} > 20^{\circ}$ forward tracking detectors: θ_{LAB} £ 20° (e.g. GEM, szintillators for stopped anti-protons with 1GeV/c) "4 π " Germanium ball

...additional tracking detectors for secondary decay products

Decay Properties

for heavy nuclei non-mesonic decay dominates

non-mesonic: mesonic ≈ 5

- $\Lambda N \not\models NN$ $\Delta Q = 176$ MeV: energetic nucleon
- $(\Lambda n \not\models nn)$: $(\Lambda N \not\models NN) \approx 0.5$

8 non-mesonic Ù decay with energetic proton has large probability in carbon $p_{NM} \approx 0.4$

Expected Count Rate

• luminosity 10 ³² cm ⁻² s ⁻¹		
• $\overline{\Xi}^+\Xi^-$ cross section 1µb for	pp Þ	100 Hz
• p(100-500 MeV/c)	p ₅₀₀ ≈ 0.003	·0.6= 0.002
 stopping and capture prob 	ability	$p_{CAP} \approx 0.15$
• total $\Lambda\Lambda$ conversion probab	oility	$p_{\Lambda\Lambda}\approx 0.05$
8 total $\Lambda\Lambda$ hyper nucleus pr	oduction	5 / hour
• gamma emission/event,		$p_{\gamma} \approx 0.5$
 γ-ray peak efficiency 		p _{GE} ≈ 0.15
8 total γ -rate \approx 0.4/ hour		

8 30 days beam time: 77000 stopped Ξ^- (KEK-E176: 80 ß E373: 1000) 3800 $\Lambda\Lambda$ - hyper nuclei produced ~400 pionic decays 300 γ -transitions detected

Things To Do

- complete microscopic calculation for anti- $\Xi\ trigger$
- detector studies (efficiencies...)
- background
- γ-spectrum

8

• ...

spectroscopy of double-strange hypernuclei may be feasible !

