

Perspectives for Hypernuclear Physics at the GSI Glue/Charm

J. Pochodzalla

Strange(ness) Matter(s)

multi hypernuclei

Danysz (1963)

MEMO

metastable exotic multihypernuclear objects

Schaffner (1991)

QGP

'neutron' stars

Ambartsumyan & Saakyan (1960)

strange stellar objects

Collins (1975)

dark matter

strangelets

C. Greiner (1987)

YN and YY Interaction

- SU(2) \rightarrow SU(3) \rightarrow SU(4)
- TOPIC strange matter (e.g.H-search: ΛΛ nuclei as catalyst)
- properties of strange baryons in nuclei
- single hypernuclei Λ, Ξ, Σ
- hyperon-atoms
- double hypernuclei
- γ-spectroscopy
 - better energy resolution
 - excited states not be populated by direct reactions
 - e.m. matrix elements, spin-parity
- decays of hypernuclei

present	and		future	
	<mark>hypernuclei</mark> s	<mark>studi</mark> es at		
BNL	DA ΦNE	JLAB	MAMIc	
KEK	GSI	JHF	HESR	

goal: γ - and decay spectroscopy of double hypernuclei

 \rightarrow YY interaction in nuclear medium

 $(\Lambda\Lambda \text{ correlations from HI probe free interaction})$

OECD MEGASCIENCE FORUM

Final Report of the

WORKING GROUP on NUCLEAR PHYSICS

January 11, 1999

7. Future Facilities for Nuclear Physics

- 7.1 Radioactive Nuclear Beams
- 7.2 High-Energy Electron Facilities
- 7.3. Multi-Purpose Hadron Facilities
- 7.4 High-Energy Heavy Ion Collisions
- 7.3 Among the specific research topics that currently generate very high levels of interest among nuclear physicists are:
- hyperon-nucleon interactions and hypernuclear physics,
- hadron properties and interactions in nuclear matter,
- antiproton physics,
- light and heavy quark spectroscopy,
- kaon decays and other processes to measure CP parameters,
- flavour mixing and other topics beyond the Standard Model,
- accelerator-based neutrino oscillation experiments,
- other topics in hadron physics (hadron spectroscopy, physics with polarised protons, physics with heavy ion beams, etc.),
- other specific experiments in fundamental symmetries (neutron dipole moment, g-2, etc.).

Double Hypernucleus ^{J. Pochodzalla} **Production by E⁻ Capture**

"cool" production: energy release $\Delta E= 28 \text{ MeV}$ for $\Xi p \rightarrow \Lambda \Lambda$

at point A: $\Xi^{-14}N \rightarrow p n {}^{13}_{\Lambda\Lambda}B$ at point B: ${}^{13}_{\Lambda\Lambda}B \rightarrow \pi^{-13}_{\Lambda}C$ at point C: ${}^{13}_{\Lambda}C \rightarrow {}^{3}He {}^{4}He {}^{4}He {}^{2}n$ **KEK-E176** S. Aoki *et al.,* Prog. Theor.Phys. **85**, 1287 (1991)

The Darmstadt Secondary Beams Facility

- **3 Key Experiments:**
- CP-violation
- Exotic QCD states (e.g. qqg)
- Spectroscopy of multi-hypernuclei

http://www.ep1.ruhr-uni-bochum.de/gsi

Hadron-Antihadron MPI-HD Production in pp Collisions

Kaidalov & Volkovitsky

quark-gluon string model

data:

B. Musgrave et al., il Nuovo Cimento 35, 735 (1965)

G.P. Fisher *et al.*, Phys. Rev. **161**, 1335 (1967)

8 with $L=2.10^{32}$ cm⁻²s⁻¹ à 1300 s⁻¹ for a C target

Ξ⁻ Properties

strangeness exchange

Btypical Ξ recoil momentum > 460 MeV/cstorage of K- not possible ($c\tau$ = 3.7 m)KEK-E176:80 stopped Ξ ß E373:1000 stopped Ξ AGS-E885:9000 stopped Ξ

Double Hypernuclei J. Pochodzalla in p Annihilation at Rest

K. Kilian (1987)

 $p d \rightarrow \{KK\pi\}^+ \Xi^-$

Production of low-momentum **Ξ**⁻

- J. Pochodzalla MPI -HD
- $\Xi^-\overline{\Xi}^+$ production close to threshold (p_{TH} = 2.62 GeV/c)
- de-accelerate Ξ^- by Ξ^- p elastic scattering

signature:

- $\overline{\Xi}^-$ with large momentum
- Ξ^- capture and secondary decay

Schematic Setup & Technical Challenges

beam: 3 GeV/c, Ø ≈1mm

internal target (gas-jet e.g. Ne) width 1mm

diamond strip detector block: 26 mm thick; $\theta_{LAB} > 20^{\circ}$

forward tracking detectors: $\theta_{LAB} \le 20^{\circ}$

(e.g. GEM, szintillators for stopped anti-protons with 1GeV/c)

"4π" Germanium array

granular gamma-detector (CdTe, CdZnTe)?

...additional tracking detectors for secondary decay products

Expected Count Rate

 Iuminosity 2.10³² cm⁻²s⁻¹ 	
• $\overline{\Xi}^+\Xi^-$ cross section $2\mu b$ for $\overline{p}p$ \flat	1300 Hz
• p(100-500 MeV/c)	p ₅₀₀ ≈ 0.0005
• E ⁺ reconstruction probability	0.5
 stopping and capture probability 	p _{CAP} ≈ 0.20
8 total stopped Ξ-	5600 / day
• total $\Lambda\Lambda$ conversion probability	$p_{\Lambda\Lambda}\approx 0.05$
8 total $\Lambda\Lambda$ hyper nucleus production	8400 / month
• gamma emission/event,	$p_{\gamma} \approx 0.5$
 γ-ray peak efficiency 	p _{GE} ≈ 0.1
8 total γ -rate \approx 0.4/ hour	
8 30 days beam time:	
77000 stopped Ξ ⁻ (KEK-E176: 80) ß E373: 1000)
	,

- 3800 $\Lambda\Lambda$ hyper nuclei produced
- ~400 pionic decays
- 300 γ-transitions detected

Two-Kaon trigger for $\Xi^{\text{J. Pochodzalla}}$ **production**

- Ξ absorption dominant (σ =0.8· $\sigma_{ABS}(pp)$)
- Ξ NÞ KK π^n strong

8 2K trigger may increase yield by about 2 orders of magnitude

facility	reaction	cross section	device	beam/ target	stopped <i>Ξ</i> per day
JHF	(K⁻,K⁺)Ξ	10 μb	spectrome- ter, $\Delta\Omega$ =30 msr	8·10 ⁶ /sec 5 cm ¹² C	7000
cold anti- protons	$p\overline{p} \to K^* \overline{K^*} \\ K^* N \to \Xi \overline{\Xi}$	p ≈ 10 ⁻⁷	vertex detector	$\frac{10^{6}}{\text{stopped}}$	5000
GSI	pp → ΞΞ	2 μb	vertex detector + spectrom.	L =2·10 ³² thin target	5600 "golden events" 500000 KK trigger

The VEGA Detector

Versatile and Efficient GAmma –detectors

Segmented Clover

7 cm Æ 14 cm long

ε _{ph} (1.3 MeV)	0.38
ε _{ph} (10 MeV)	0.11
P/T (1.3 MeV)	D0.7
N _{gr}	4w4

Status

- 1 seg. clover delivered
- 2 seg. clover ordered, delivery 5/2000
- fast readout electronics in development

Segmented Clover Box

- 4 seg. clover, $\varepsilon_{PH} = 0.13$
- resolution $\sim 0.5 \%$

Hypernuclei and Deconfinement

- \succ overbinding of light Λ hypernuclei
- pionic decay width of A=4 hypernuclei

suggest central repulsive potential

? manifestation of the Pauli principle on the quark level ?

J. Pochodzalla What Do We Know about Single Hypernuclei?

< 100 bound states of Λ -hypernuclei are observed; typical resolution of (K,π) reactions 1-2 MeV

< 10 Λ -hypernuclei have a spin assigned

5 hypernuclear γ -transitions are established: Nal: ∆E ~ 100 keV

For comparison: spin-dependent ΛN interaction results in a "hypernuclear fine structure" **Ô**100 keV

Only 1 Σ -hypernucleus (⁴ $_{\Sigma}$ He) is clearly established.

Narrow states observed previously are questionable.

Information on Ξ - hypernuclei is scarce (<10).

Only 2 events are clearly identified (KEK E176).

Phenomenological Wood-Saxon potential V^E < 20 MeV

Present Status of MPI-HD Multi-Strange Hypernuclei

Only 6 candidates for multi-hypernuclei are observed

1963: Danysz <i>et al</i> .	¹⁰ Be
1966: Prowse	⁶ He
1991: KEK-E176	$^{10}_{\Lambda\Lambda}$ Be or $^{11}_{\Lambda\Lambda}$ Be
1991: KEK-E176	3 non-mesonic decays
but	

- 1989: Dalitz et al.
- 8 Danysz event o.k. but double mesonic decay surprising
- 8 Prowse event questionable
- 1991: Dover et al.
- 8 KEK event most likely ¹³_{AA}B

$$B_{\Lambda\Lambda}({}^{A}_{\Lambda\Lambda}Z) = B_{\Lambda}({}^{A}_{\Lambda\Lambda}Z) + B_{\Lambda}({}^{A-1}_{\Lambda}Z)$$
$$\Delta B_{\Lambda\Lambda}({}^{A}_{\Lambda\Lambda}Z) = B_{\Lambda}({}^{A}_{\Lambda\Lambda}Z) - B_{\Lambda}({}^{A-1}_{\Lambda}Z)$$

Hypernucleus	$B_{\Lambda\Lambda}$ [MeV]	$\Delta B_{\Lambda\Lambda}$ [MeV]
⁶ _{ΛΛ} He	10.9 ± 0.6	4.7 ± 0.6
$^{10}_{\Lambda\Lambda}$ Be	17.7 ± 0.4	4.3 ± 0.4
$^{13}_{\Lambda\Lambda}$ B	27.6 ± 0.7	4.8 ± 0.7

Spectroscopy of Double Hypernuclei A Possible Experiment for HESR

STRANGENESS THE THIRD DIMENSION OF THE NUCLEAR CHART

Rauischholzhausen, April 8, 1999 J. Pochodzalla MPI für Kernphysik Heidelberg

Why Strageness?

8 "exotic" multi-quark systems (H-particle)

8 hyperon-hyperon interaction

Baryon Stars A Strange Matter

Baryon Stars

S. Balberg et al., astro-ph/9810361

Maximum Mass of Baryon Stars

S. Balberg et al., astro-ph/9810361

Searching for the H-Particle A Strange Object

The H - Particle

QCD rule: observed free particles are colorless

U

d

S

R.L. Jaffe (1977): color-magnetic binding may produce a metastable hexa-quark **H**

J. Pochodzalla

=

U

S

d

H -Particle and Double Hypernuclei

Strong, strangeness conserving decay $\Lambda\Lambda N \rightarrow HN$ possible if $m_H \Lambda\Lambda$) - B(H) < 2·m_{Λ} - B $\Lambda\Lambda$)

i Observation of weak decay of a double hypernucleus limits mass of H

$$B_{\Lambda\Lambda}(^{A}_{\Lambda\Lambda}Z) = B_{\Lambda}(^{A}_{\Lambda\Lambda}Z) + B_{\Lambda}(^{A-1}_{\Lambda}Z)$$

2 M(Λ) = 2231.4 MeV/c²

Hypernucleus	$B_{\Lambda\Lambda}$ [MeV]	m _H [MeV/c²]
⁶ _{AA} He	10.9 ± 0.6	> 2220.5 + B(H)
¹⁰ ллВе	17.7 ± 0.4	> 2213.7 + B(H)
$^{13}_{\Lambda\Lambda}$ B	27.6 ± 0.7	> 2203.7 + B(H)

but...

decay of bound $H \rightarrow \Lambda p\pi^-$ may mimic a decay of a double hypernucleus

8 double hypernuclei events can be reinterpreted as H hypernuclei

Searching the H

 $M(H) > 2 M(\Lambda)$ à strong decays $M(H) < 2 M(\Lambda)$ à weak decays $(2 M(\Lambda) = 2231.4 \text{ MeV/c}^2)$

Direct searches:

(K⁻,K⁺)	BNL E836	³ He (K [_] ,K ⁺) <mark>H</mark> n, ⁶ Li (K [_] ,K ⁺) <mark>H</mark> X
		Δm<-50 MeV: $\sigma_{\rm H}$ < 0.1 $\sigma_{\rm COAL}$ (ΛΛ)
	BNL E885	¹² C (K⁻,K⁺) H X
	KEK E224	¹² C (K⁻,K⁺)H X; Θ _{K+} ≈ 00
		∆m<-16 MeV: σ _H < 0.04-0.6 μb/sr
stopped Ξ⁻	BNL E813	(Ξ⁻d) _{atom} → H n; monoenergetic n
p+A	BNL E888	weak decay
		2 candidates: background
∑- + A	WA89	weak and strong decays
		σ _H Ô σ _{COAL} (ΛΛ)

relativistic HI BNL E810, E896

Weak Decays

• weakly bound H -dibaryon \hat{e} weak decay $\Delta S = 1$

Η Ϸ Σ ⁻ ρ	50 %	40 %
Η Ϸ Σ ⁰ n	30 %	45 %
Η Ϸ Λ ⁰ n	20 %	15 %
	Jaffe (1977)	Donoghue (1986)

Calorimetry very important

"H " Mass Spectra

M. Beck (thesis, Heidelberg 1997)

background due to misidentified hyperons

no significant signal of a H -particle is observed

8

Σ-A Reaction (WA89) H Production Limits

J. Pochodzalla

M. Beck (thesis, Heidelberg 1997)

• weak decays [$\tau(H) = \tau(\Lambda)$]

 $H_{\mu b} R \Sigma^{-} p$: σ. BR < 0.8 ± 0.2 ± 0.2 $H_{\mu b} R \Sigma^{0} n$: σ. BR < 3.4 ± 1.0 ± 0.9 H Ϸ Λ⁰ n : σ. BR < 5.0 ± 1.5 ± 1.3 μb/N

• strong decays $M(H) > 2 M(\Lambda)$

Ý no significant structure with $\Gamma \approx 100 \text{ MeV/c}^2$

H Þ Ξ⁻ p : σ. BR < $1.7 \pm 0.3 \pm 0.5 \mu$ b/N H Þ Λ⁰Λ⁰: σ. BR < $0.2 \pm 0.017 \pm 0.042 \mu$ b/N

predictions based on coalescence

Sano	5 GeV/c p+Ne	10 nb
Cousins & Kle	ein 24 GeV/c p+Pt	20 nb
Cole	28 GeV/c p+Ca	420 nb
Rotondo	400 GeV/c p+Be	170 nb
Moinester	350 GeV/c Σ+p	~ 1µb

H production limits are of the order of predictions within coalescence scenarios

Enhanced Production of $\Lambda\Lambda$ Pairs (E224)

J. Pochodzalla

Phys. Lett. B444, 267 (1998)

¹²C (K⁻,K⁺)<mark>Λ</mark>ΛX, p_{K-} = 1.66 GeV/c

enhanced cross section: 3 μb/sr

Enhanced Production ^{J. Pochodzalla} of $\Lambda\Lambda$ Pairs (KEK-E224)

A. Ohnishi et al., nucl-th/99xxx

Status of Double Hypernuclei

Needed: strangeness S=-2 transfer

- 8 Ξ[−] capture
- 8 Relativistic Heavy Ion collisions
- 8 Antiproton annihilation at rest

Double Hypernuclei J. Pochodzalla in Relativistic HI Collisions

In relativistic HI Collisions many Λ 's are produced

example: AGS central Au+Au ~20

central Si+Au ~5

Coalescence may produce Λ^n hypernuclei example: AGS central Au+Au $p({}^6_{\Lambda\Lambda}He) \approx 1.6 \cdot 10^{-5}$ per reaction

more general: $p(A,S) \sim 10^3 - A - |S|$

possibility to produce multi-strange hypernuclei Bodmer (1971), Rufa *et al.* (1989) MEMOs Schaffner *et al.* (1992)

$\Xi^{-}(dss)\mathbf{p}(uud) \mathbf{p} \Lambda(uds)\Lambda(uds)$

- "cool" production: energy release $\Delta E= 28 \text{ MeV}$
- Ξ⁻⁺¹²C: T. Yamada and K. Ikeda, PRC **56**, 3216 (1997)

TABLE VIII. Calculated production rates per Ξ (*R*/ Ξ) averaged over the absorption rates in the case of $V_{0\Xi} = 16$ MeV.

Channel	R/王 (%)
$^{12}_{\Lambda\Lambda}\text{B}+n$	1.48
$^{12}_{\Lambda\Lambda}$ Be+p	0.99
$^{11}_{\Lambda\Lambda}$ Be+d	1.81
$^{10}_{\Lambda\Lambda}$ Be+t	0.02
$^{9}_{\Lambda\Lambda}$ Li+ α	0.02
$^{6}_{\Lambda\Lambda}$ He+ ⁷ Li	0.23
${}^{5}_{\Lambda\Lambda}H + {}^{8}Be$	0.20
${}^{9}_{\Lambda}\text{Be} + {}^{4}_{\Lambda}\text{H}$	0.07
${}^{8}_{\Lambda}\text{Li} + {}^{5}_{\Lambda}\text{He}$	0.04
$^{12}_{\Lambda}\text{B} + \Lambda$	1.08

total probability $p_{\Lambda\Lambda} \approx 0.05$

8

individual states a factor of ≈ 10 lower

$\Xi^{-}(\text{dss})p(\text{uud}) \stackrel{\text{b}}{\Rightarrow} \Lambda(\text{uds})\Lambda(\text{uds})$ in Microscopic Models

Tracking of Ξ⁻

 several closely spaced layers of small micro-strip tracking detectors (diamond, Si) close (5mm) to the primary target resp. beam

• Ξ decay during cascading (~10⁻¹²s) small (Batty 95)

8 tracking and capture probability of $p_{CAP} \approx 0.15$ feasible

J. Pochodzalla **Production Probability** for low-momentum Ξ^{-}

MPI-HD

- $\Xi \overline{\Xi}$ cross section ~ A^{2/3}
- $\overline{\Xi}$ absorption $\sigma = 0.8 \cdot \sigma_{ABS}(\overline{p}p)$
- elastic scattering σ_{EL} =10mb

 $\sigma(\Xi^{-}pP \Xi^{-}p) = 13\pm 6$ mb, Dover & Gal; $\sigma(\overline{p}pP \overline{p}p) = 22$ mb

• σ(Ξ⁻pÞ Ξ⁻p) ∝ *exp*(B·t); B=5GeV⁻²

J. Pochodzalla MPI-HD

Sven Soff et al. (Frankfurt)

• 1000 $\overline{\Xi}$ or Ξ at b=0 with p=1.5 GeV/c

emission probability of $\overline{\Xi}$ at forward angles (\Leftrightarrow large momenta) $\approx 0.2\%$ probability for low momentum $\Xi \sim 40\%$

total probability $p_{500} = 0.002 \cdot 0.4 \sim 0.001$

Decay Properties

non-mesonic: mesonic ≈ 5

- $\Lambda N \not\models NN$ $\Delta Q = 176$ MeV: energetic nucleon
- $(\Lambda n \not\models nn)$: $(\Lambda N \not\models NN) \approx 0.5$

8 non-mesonic decay with energetic proton has large probability in carbon $p_{NM} \approx 0.4$

Things To Do

- complete microscopic calculation for anti- $\Xi\ trigger$
- detector studies (efficiencies...)
- background
- γ-spectrum

8

• ...

spectroscopy of double-strange hypernuclei may be feasible !

S=-1 Hypernuclei

High-Resolution Hypernuclear γ-Spectroscopy at GSI

J. Gerl, Ch. Schlegel, P. Senger GSI Darmstadt J. Pochodzalla MPI für Kernphysik Heidelberg D. Dehnhard, H. Juengst, Jinghua Liu University of Minnesota, Minneapolis B. Kohlmeyer Universität Marburg A. Wagner Forschungszentrum Rossendorf e.V. W. Korten CEA Saclay H. Lenske Universität Giessen

Why Hypernuclei?

8 deeply bound states are accessible

8 strange baryons in nuclear medium

≻spin-dependent interactions

➢hyperon states and collective motion

>do narrow Σ , Ξ excitations exist?

- 8 hyperon-nucleon interaction
 - baryon stars
- 8 first step towards multistrange objects

...and why γ -spectroscopy ?

better energy resolution 1 MeV \rightarrow 10 keV

8 excited states, which can not be populated by direct reactions (e.g. if spin-flip necessary)

8 e.m. matrix elements, spin-parity

present and future hypernuclei studies at				
BNL	DAΦNE	JHF		
KEK	JLAB	MAMI C		

Production of $\Lambda - Hypernuclei$

J. Pochodzalla

ls - splitting of ¹³_AC

Is - splitting of ¹³_AC ^{J. Pochodzalla} experimental situation /

M. May et al., PRL **47**, 1106 (1981)

8 splitting small : $\Delta E = 0.36 \pm 0.3$ MeV

M. May *et al*., PRL **78**, 4343 (1997) S. Ajimura *et al.*, NP **A639**, 93c (1998)

8 splitting large : $\Delta E = 1.03 \pm 0.6$ MeV

Is splitting of ${}^{13}_{\Lambda}C$ J. Pochodzalla experimental situation //

but: is the spin orbit splitting really small?

Spin-Orbit Splitting in Hadron Field Theory

J. Pochodzalla

MPI-HI

Density dependent relativistic hadron field theory

- in-medium Dirac-Brückner meson-baryon vertices
- ratio of Λ - σ to N- σ coupling strength chosen as R_{σ} = 0.49

Inner-Shell Transitions

inner shell transitions in heavy nuclei explore the properties of the Λ "deep inside" the nucleus.

- p_{Λ} states expected to decay via γ -emission

• e.g. in ⁹⁰Zr: $[g_{9/2}]^{-1} \otimes [p_{3/2}]_{\Lambda}$ at 10° $\sigma \approx 4 \ \mu b/sr$ (D.J. Millener 1999)

γ<mark>- Spectroscopy of</mark> Hypernuclei

• production (π^+, K^+) $p_{BEAM} \approx 1 \text{ GeV/c}$ $5 \cdot 10^5 \text{ sec}^{-1}$ @ Cave C

- trigger π , K tracking
- bound state selection
 △M = 8 MeV (FWHM)
 diff. energyloss, straggling

high resolution γ - spectroscopy

GSI

KAOS spectrometer

VEGA Ge-array

KEK vs. GSI

J. Pochodzalla

	KEK	GSI	
primary beam	12 GeV (p)	2 AGeV (¹² C)	
π ⁺ flux on target	3·10 ⁶ /s	0.5·10 ⁶ /s	
momentum resolution	10 ⁻³	3·10 ⁻³	
typical momentum	1 GeV/c	1 GeV/c	
magnetic spectrometer	SKS	KAOS	
resolution	2·10 ⁻³	5·10 ⁻³	
ΔE_x	2 MeV	5 MeV	
ΔΩ	100 msr	35 msr	
γ-detector	Ge-ball	VEGA	
photo peak efficieny	3 % @ 1 MeV	20 % @1.3 MeV	
	0.6% @ 5 MeV	5-6% @10 MeV	

Program

J. Pochodzalla MPI -HD

30

35

40

 \mathbf{O}

0.0

Rate Estimate

- beam flux at the KAOS target of $5 \cdot 10^5 \pi^+/sec$
- KAOS solid angle $\Delta\Omega$ = 35 msr
- K⁺ survival probability for 5 m flight path SF = 0.36

J. Pochodzalla

MPI-HD

- analysis efficiency 80%
- live time 80%

target	⁷ Li	¹³ C	⁹⁰ Zr
target thickness [g/cm ²]	5	10	13
N _T /10 ²³	4.2	5	0.66
σ[μb/sr]	3	1.7	4
γ –energy [MeV]	3.42 ^ 0.86	10	6.1
ε _γ [%]	1.1	5.9	8.0
N _γ per day	5	18	7

• 5 days of parasitic beam in cave C prior to scheduling the proposed experiment (*halo, background...*)

- 4 days prior main run for test and calibration
- 4 weeks of beam on target (1+1+2)

The ⁹ ABe case

