The Next Generation of Hypernucleus and Hyperatom Experiments

GSI, 18.10.2000 Josef Pochodzalla Univ. Mainz

Quark Structure of Hyperons

Present Status of s=-1 Nuclei

- Until few years ago hypernuclear studies focused on (π⁺,K⁺) or (K⁻,π⁻) reaction
- New tools
 - $e^+e^- \rightarrow \Phi_{1020} \rightarrow KK$ tagging
 - γ-spectroscopy with Ge
 - (e,e'K+)YX
- Topics
 - YN interaction
 - non-mesonic weak decay
 - $\Lambda p \rightarrow pn$
 - $\Lambda n \rightarrow nn$

$$\sqrt{m_{_N}(m_{_\Lambda}-m_{_N})c} \approx 400 MeV/c$$

Weak decays...

 unique chance to study baryon-baryon weak interaction ! (FINUDA @ DAΦNE) (BNL, KEK, GSI) (TJNAF, MAMI-c)

Hypernuclei and Deconfinement

Question...

 Manifestation of the Pauli priciple on the quark ?

Status of Multi - Hypernuclei

Multi-Hypernuclei are a *terra incognita*...
...but they exist !

6 candidates for ΛΛ-hypernuclei are observed
1963: Danysz *et al.* ¹⁰_{ΛΛ}Be
1966: Prowse ⁶_{ΛΛ}He
1991: KEK-E176 ¹⁰_{ΛΛ}Be or ¹³_{ΛΛ}Be
1991: KEK-E176 3 non-mesonic decays

Hypernucleus	$B_{\Lambda\Lambda}$ [MeV]	$\Delta {f B}_{\Lambda\Lambda}$ [MeV]
⁶ _{AA} He	10.9 ± 0.6	$\textbf{4.7} \pm \textbf{0.6}$
$^{10}_{\Lambda\Lambda}$ Be	17.7 ± 0.4	$\textbf{4.3} \pm \textbf{0.4}$
$^{13}_{\Lambda\Lambda}$ B	$\textbf{27.6} \pm \textbf{0.7}$	$\textbf{4.8} \pm \textbf{0.7}$

ΛΛ-Nuclei as a Laboratory

Sakai et al (nucl-th/9912063)...

"The situation in a finite nucleus will be that the low-lying states have the character of $\Lambda\Lambda$ bound states, but that some of excited states may have strong admixture of the H-nuclear states."

The s=-3 Challange

Ω hypernuclei by ΩΩ production
 Electric quadrupole moment of the Ω by hyperfine splitting in Ω-atoms*)

- tensor forces between quarks
- expectation $Q_{\Omega} = (0 3.1) \ 10^{-2} \ fm^2$
- ∆E(ℓ=10 →ℓ=9) ~ 515 keV
 - ∆E_Q ~ few keV for Pb

spin-orbit $\Delta E_{\ell s} \sim (\alpha Z)^4 \, \ell m_W$ quadrupole $\Delta E_Q \sim (\alpha Z)^4 Q_{33} m_\Omega^3$

"...The precision measurements of X-rays from Ω^- Pb atoms will certainly require a future generation of accelerators and probably also of physicists."

Production of s=-2 Hypernuclei

- relativistic HI collisions
 - coalescence of hyperons
 Bodmer (1971), Rufa *et al.* (1989), Schaffner *et al.* (1991)...
- Ξ^- capture: $\Xi^- p \rightarrow \Lambda \Lambda + 28$ MeV
 - (K⁻,K⁺)
 KEK-PS E373, BNL-E906...
 - pp annihilation at rest _
 K. Kilian (1987), DIANA coll.
 - $\Xi \Xi$ threshold ~

 $\overline{p}p \rightarrow K^*K^* \ p(K^*) = 285 \text{ MeV/c}$ $\longrightarrow \overline{K}^*N \rightarrow K \Xi^$ $p d \rightarrow \{KK\pi\}^+ \Xi^-$

J. Pochodzalla

- Ξ-atoms: x-rays
- conversion
 - $\Xi^{-}(dss) \mathbf{p}(uud) \rightarrow \Lambda(uds) \Lambda(uds)$
 - ∆Q = 28 MeV

Conversion probability...

...approximatly 5-10%

J. Pochodzalla

Hyperon Production

For example...

• with $L=2.10^{32}$ cm⁻²s⁻¹ \implies 700 s⁻¹ for a C target

Ξ⁻ Properties

■ Ξ⁻ mean life 0.164 ns

Consequence...

- minimize distance *production capture*
- *initial* momentum 100-500 MeV/c \rightarrow range ~ few g/cm²

Setup

- beam: 3 GeV/c, Ø ≈ 1mm; no halo (roman pots?)
- internal gas target e.g. Ne, width 1mm
- Tracking detector for Ξ⁻
 - 2-3 cm thick
 - diamond strip
 - Si strip
 - capillary fiber

Capillary Detector

• Glascapillaries filled with szintillator

Problem...

fast readout

• possible solution :Hybrid Phototube + ALICE pixel chip Needs R&D !

Gamma Spectroscopy

Ge box based on VEGA type detectors

- segmented Clover
- 7 cm Ø, 14 cm long
- 4 seg. clover, ε_{PH} = 0.13 @ 1.33 MeV
- resolution ~ 0.5 %

crucial point...

 fast electronics under development

Count Rate

- **luminosity 2-10**³² cm⁻²s⁻¹
- Ξ⁺Ξ⁻ cross section 2µb for pp
- p(100-500 MeV/c)
- Ξ^+ reconstruction probability
- stopping and capture probability
- total stopped Ξ^-
- Ξ^- to $\Lambda\Lambda$ conversion probability
- total AA hyper nucleus production
- gamma emission/event,
- γ-ray peak efficiency

total single line γ -rate

- ~ 5/day "golden events" (Ξ+ trigger)
- ~ 500/day with KK trigger

•	700 Hz
	p ₅₀₀ ≈ 0.0005
	0.5
	р _{саР} ≈ 0.20
•	3000 / day
	$p_{\Lambda\Lambda} \approx 0.05$
•	4000 / month
	$\mathbf{p}_{\gamma} \approx 0.5$
	p _{GE} ≈ 0.1

Competition

experiment	reaction	device	beam/ target	status
BNL-AGS E885	$(\Xi^{-},^{12}C) \rightarrow {}^{12}B + n \Lambda \Lambda$	neutron detector arrays	K ⁻ beam, diamond target	20000 stopped Ξ ⁻
BNL-AGS E906	2π decays	Cylindrical Detector System	K ⁻ beam line	few tens 2π decays of ${}^4_{\Lambda\Lambda}H$
KEK-PS E373	(K⁻,K⁺)Ξ	emulsion	(K ⁻ ,K ⁺)	several hundreds stopped Ξ⁻
facility	reaction	device	beam/ target	Observed captured <i>⊆</i> per day
JHF	(K⁻,K⁺)Ξ	spectrometer, $\Delta\Omega = 30$ msr	8-10 ⁶ /sec 5 cm ¹² C	<7000
cold anti-protons	$p \bar{p} \rightarrow K^* K^*$ $K^* N \rightarrow \Xi K$	vertex detector	10 ⁶ stopped p̄ per sec	2000
GSI-HESR	pЪ→ΞΞ	vertex detector + γ–spectrometer	L=2·10 ³² , thin target, production vertex ≠ decay vertex	3000 "golden events" ~ 300000 KK trigger

Conclusion

• The anti-proton storage ring HESR @ GSI can provide a unique facility to study strange hyperatoms and hypernuclei.

• Key points

- highest luminosity possible
- moderate beam quality
- micro tracking device
- high rate Germanium array

 Detailed spectroscopic studies of multi-strange systems will be possible. "hyperon laboratory"