

Future Experiments on Hypernuclei and Hyperatoms

- 1. The Physics Case
- 2. Present Status
- 3. Hypersystems in pp Interactions
- 4. The Experiment

1. The Physics Case

Two Sides of a Coin

- baryons tagged with a strange quark as a probe of the nuclear structure
- nuclei as a femto-laboratory for strange baryons

To use nuclei as a QCD-laboratory we have to understand the laboratory

Strange Baryons in Nuclear Systems

- S=1: Λ-, Σ-hypernuclei
 - nuclear structure, new symmetries
 - the presence of a hyperon may modify the size, shape... of nuclei
 - new specific symmetries
 - Y-N interaction
 - strange baryons in nuclei
 - weak decay
- s=2: Ξ-atoms, Ξ-, ΛΛ-hypernuclei
 - nuclear structure
 - baryon-baryon interaction in SU(3)_f
 - H-dibaryon
- ▶ s=3: Ω-atom, (Ω-,ΛΞ-, ΛΛΛ-hypernuclei ?)
 - quadrupole moment of the Ω

meson vs. gluon/quark exchange

Hypernuclei provide a link between nuclear physics and QCD

Weak baryon-baryon interaction Inon-mesonic weak decay of hypernuclei explore the baryon-baryon weak interaction N-N scattering

- only parity violating part of weak interaction
- parity-conserving part masked by strong interaction

- parity violating and parityconserving part of weak, strangeness changing, interaction
- q~400 MeV/c
 - \Rightarrow probes short distances

ΛΛ Nuclei as Femto-Laboratory

H-Particle R.L. Jaffe (1977)

T. Sakai, K. Shimizu, K. Yazaki Prog.Theor.Phys.Suppl. 137 (2000) 121-145

S=-2 Nuclei and H-dibaryon States

H-particle in a nucleus \neq free *H*

(see e.g. T. Yamada, NP A691 (2001) 250c; (3q)+(3q) quark cluster model)

Formation of an H-particle in nuclei may modify levels in $\Lambda\Lambda$ -nuclei

Fundamental Properties of Baryons

Contributions to *intrinsic* quadrupole moment of baryons

- One-gluon exchange
- Meson exchange

$$Q_i = \int d^3 r r(r) (3z^2 - r^2)$$

J=1/2 baryons have no spectroscopic quadrupole moment

$$Q_{s} \propto (3J_{z}^{2} - J(J+1)) \xrightarrow{J=1/2}{J_{z}=1/2} 0$$

• Ω^- Baryon:

- ▶ J=3/2
- long mean lifetime 0.82.10⁻¹⁰ s
- only one-gluon contributions to quadrupole moment

(A.J. Buchmann Z. Naturforsch. 52 (1997) 877-940)

The Ω quadrupole moment is an unique testcase for the quark-quark interaction

A very Strange Atom

• hyperfine splitting in Ω -atom \Rightarrow electric quadrupole moment of Ω

spin-orbit	$\Delta E_{ls} \sim (\alpha Z)^4 l \cdot m_{\Omega}$
quadrupole	$\Delta E_{Q} \sim (\alpha Z)^{4} Q_{\Omega} m_{\Omega}^{3}$

• prediction $Q_{\Omega} = (0 - 3.1) \ 10^{-2} \ \text{fm}^2$

► ΔE_{Q} ~ few keV for Pb

R.M. Sternheimer, M. Goldhaber PRA 8, 2207 (1973)

2. Present Status

Single Hypernuclei

- strangeness deposition (stopped K⁻, π -)
 - tagged kaon "beam"
 - Iow momentum (T=16MeV)
 - Iow background
 - ► also (stopped K^-,π^+) \Rightarrow neutron rich nuclei
- strangeness production (π^+ , K⁺) γ ,(π^- , K⁰) γ
 - p_{BEAM} ≈ 1 GeV/c
 - high beam intensity
 - Iow cross section (1-10 mb/sr)
 - ► q > 300 MeV/c \Rightarrow large Δp , ΔL
- ► strangeness exchange $(K^{-}, \pi^{-}), (K^{-}, \pi^{0})$
 - Iow beam intensity
 - larger cross section (100 mb/sr)
 - magic momentum \Rightarrow low Δp , ΔL

(e,e´K⁺), (γ,K⁺)

- spin-flip amplitude \Rightarrow unnatural parity states
- new nuclei (p $\rightarrow \Lambda$: ${}^{10}_{\Lambda}Be$)
- polarised beam
- **•** sub-MeV resolution possible (\rightarrow 0.3 MeV) for *particle unstable* states

FINUDA@DA
$$\Phi$$
NE
 $e^+ + e^- \rightarrow \Phi \rightarrow K^+ + K^-$
 $K^-_{stopped} + {}^A Z \rightarrow^A_\Lambda Z + p^-$

non-substitutional state

BNL, KEK, J-PARC

TJNAF, MAMI-C

$$e + {}^{\scriptscriptstyle A} Z \rightarrow e' + K^{\scriptscriptstyle +} + {}^{\scriptscriptstyle A}_{\Lambda} (Z - 1)$$

Status of Single Hypernuclei

Double Hypernuclei

GUTENBERG MANUERSTAT

Multi-Hypernuclei are *terra incognita*, but they exist !

 1963: Danysz et al.
 $\Lambda\Lambda^{10}$

 1966: Prowse
 $\Lambda\Lambda^{6}$

 1991: KEK-E176
 $\Lambda\Lambda^{13}$

 2001: AGS-E906
 $\Lambda\Lambda^{4}$

 no binding energies

 2001: KEK-E373
 $\Lambda\Lambda^{6}$

II

 $_{\Lambda\Lambda}^{10}$ Be $_{\Lambda\Lambda}^{6}$ He $_{\Lambda\Lambda}^{13}$ B (or $_{\Lambda\Lambda}^{10}$ Be) $_{\Lambda\Lambda}^{4}$ H (~15); *ies* $_{\Lambda\Lambda}^{6}$ He (Nagara) $_{\Lambda\Lambda}^{10}$ Be

(Demachi-Yanagi)

 $?^{-}+^{12}C \rightarrow {}^{6}_{??}He+^{4}He+t$ $_{??}^{6}$ He $\rightarrow _{?}^{5}$ He+p+p⁻ NAGARA -15 10.0.0

H. Takahashi et al., PRL 87, 212502-1 (2001)

What is known?

	$B_{\Lambda\Lambda}({}^{A}_{\Lambda\Lambda}Z)$ $\Delta B_{\Lambda\Lambda}({}^{A}_{\Lambda\Lambda}Z)$	$B_{\Lambda}({}_{\Lambda\Lambda}^{A}Z) + B_{\Lambda}({}_{\Lambda\Lambda}^{A}Z) - B_{\Lambda}({}_{\Lambda\Lambda}^{A}Z) - B_{\Lambda}({}_{\Lambda\Lambda}^{A}Z) - B_{\Lambda}({}_{\Lambda\Lambda}^{A}Z) - B_{\Lambda}({}_{\Lambda}^{A}Z) - B_$	$B_{\Lambda}({}^{A-1}_{\Lambda}Z)$ $B_{\Lambda}({}^{A-1}_{\Lambda}Z)$		
Hyperkern	$B_{_{\Lambda\Lambda}}$ (MeV)	$\Delta B_{\Lambda\Lambda}$ (MeV)			
_{^6} Не	10.9 ± 0.5	4.7 ± 0.6	Prowse	(1966)	
{^6} Не	$7.25 \pm 0.19^{\tiny +0.18}{\tiny -0.11}$	$1.01 \pm 0.20^{+0.18}_{-0.11}$	KEK-E3	73 (2001)	
$^{10}_{\Lambda\Lambda}Be$	17.7 ± 0.4	4.3 ± 0.4	Danysz	(1963)	same
¹⁰ <i>В</i> е	8.5±0.7	-4.9 ± 0.7	KEK-E1	76 (1991)	event
$^{13}_{\Lambda\Lambda}B$	27.6 ± 0.7	4.8 ± 0.7	KEK-E1	76 (1991)	
¹⁰ Ве	12.33 ^{+0.35} _{-0.21}		KEK-E3	73 (2001, unp	ublished)

- Interpreting $\Delta B_{\Lambda\Lambda}$ as $\Lambda\Lambda$ bond energy one has to consider e.g.
 - dynamical change of the core nucleus
 - ΛN spin-spin interaction for non-zero spin of core
 - excited states possible
- if $\Lambda\Lambda$ or intermediate Λ -nuclei are produced in excited states
 - Q-value difficult to determine (particularly for heavy nuclei)
 - nuclear fragments difficult to identify with usual emulsion technique
- new concept required $\Rightarrow \gamma$ -spectroscopy!

3. Hypersystems in pp Interactions

Ξ⁻ capture

conversion

- ► Ξ⁻(dss) p(uud) ® Λ(uds) Λ(uds)
- ► ∆Q = 28 MeV
- Conversion probability approximatly 5-10%

General Idea

Use pp Interaction to produce a hyperon "beam" (t~10⁻¹⁰ s) which is tagged by the antihyperon or its decay products

Production of Double Hypernuclei

Competition

experiment	reaction	device	beam/ target	status
BNL-AGS E885	$(\Xi^{},^{12}C) \rightarrow {}^{12}B + n$ LL	neutron detector arrays	K ⁻ beam, diamond target	20000 stopped E
BNL-AGS E906	2π decays	Cylindrical Detector System	K ⁻ beam line	few tens 2π decays of ${}^{4}_{\Lambda\Lambda}H$
KEK-PS E373	(K⁻,K⁺)Ξ	emulsion	(K ⁻ ,K ⁺)	several hundreds stopped Ξ ⁻
facility	reaction	device	beam/ target	Captured X- per day
JHF	(K⁻,K⁺)Ξ	spectrometer, $\Delta\Omega$ =30 msr	8·10 ⁶ /sec 5 cm ¹² C	< 7000
cold anti- protons	$p \bar{p} \rightarrow K^* \bar{K}^*$ $\bar{K}^* N \rightarrow \Xi K$	vertex detector	10 ⁶ stopped p per sec	2000
GSI-HESR	p p̄ → Ξ Ē	vertex detector + γ–spectrometer	 ⊗=2.10³², thin target, production vertex ④ decay vertex 	3000 "golden events" ~ 300000 KK trigger (incl. trigger)

Expected Count Rate

- ~7/day "golden" γ -ray events (Ξ ⁺ trigger)
- ~ 700/day with KK trigger

high resolution γ-spectroscopy of double hypernuclei will be feasible

Production of Ω -Atoms

A very strange Atom

R.M. Sternheimer, M. Goldhaber PRA 8, 2207 (1973)

- Ω atoms by $\Omega\overline{\Omega}$ produktion (~35/sec)
- hyperfine splitting in Ω-atom
 ⇒ electric quadrupole moment of Ω

spin-orbit	$\Delta E_{ls} \sim (\alpha Z)^4 \operatorname{I-m}_{\Omega}$
quadrupole	$\Delta E_Q \sim (\alpha Z)^4 Q_\Omega m^3_\Omega$

- prediction $Q_{\Omega} = (0 3.1) \ 10^{-2} \ \text{fm}^2$
- $E(n=11, l=10 \rightarrow n=10, l=9) \sim 515 \text{ keV}$
- $\Delta E_Q \sim \text{few keV for Pb}$
- taking production rate, stopping probability, capture probability and detection probability into account we expect
 - ~10 detected γ -transitions per day

 \Rightarrow with high resolution γ -spectroscopy feasible

Count rate estimate needs more detailed studies!

4. The Experiment

The PANDA Detector

- hermetic (4π)
- high rate
- PID (γ, e, μ, π, K, p)
- trigger (e, μ, Κ, D, Λ)
- compact (€)
- modular

- Solid state-micro-tracker
 - thickness ~ 3 cm
- High rate germanium detector

Summary

Hypersystems provide a link between nuclear physics and QCD

They allow to study basic properties of strongly interacting systems

These unique experiments will be feasible at the GSI-HESR