Pentaquarks
 Facts and Mysteries

- Introduction
- Experimental facts: $\Theta^{+}(1540)$
- Theoretical situation
* Experimental facts: Е(1860)
- Quintessence

Ordering schemes

- help to understand the principle of underlying physics
- help to make make predictions of missing pieces
- Dmitry Ivanovich Mendeleev (1834-1907)
- Zeitschrift für Chemie 12, 405-6 (1869)

The Particle Zoo

- during the 50s and 60s many new elementary particles were discovered (particle zoo)

Iepton
meson
baryon

Quark/Aces model (1964)

- substructure of hadrons
- Murray Gell-Mann \rightarrow quarks
- George Zweig \rightarrow aces
- quarks:
- fractional electric charge!
- spin $1 / 2$
- come in flavors (up, down, ...)

Gell-Mann

quark	spin	charge Q/e	baryon number B	strangeness S
u	$1 / 2$	$+2 / 3$	$1 / 3$	0
d	$1 / 2$	$-1 / 3$	$1 / 3$	0
s	$1 / 2$	$-1 / 3$	$1 / 3$	-1

- baryons = three quarks

$$
\begin{aligned}
& B=\frac{1}{3}+\frac{1}{3}+\frac{1}{3}=1 \\
& B=\frac{1}{3}-\frac{1}{3}=0
\end{aligned}
$$

- mesons = quark-antiquark pair

Quark Model

- Quark model in SU(3) (u, d and s quark have similar mass):
- three valence quarks define flavour content of a baryon
- Octet and Decuplet

- Success: prediction of W- (Gell-Mann, 1964) and subsequent observation (V.E. Barnes et al., 1964)

The Omega baryon

FIG. 2. Photograph and line diagram of event showing decay of Ω^{-}.

Pentaquarks

- common believe is that the states should be color neutral
- but: quark model does not exclude systems of more than 3 quarks
- in case of 5 quarks this implies a $q q q q \bar{q}$ to be color neutral
- two cases for baryons
- antiquark has same flavor than another quark

$$
\begin{aligned}
& q q q q_{f} \bar{q}_{f}: \\
& B\left(q q q q_{f} \bar{q}_{f}\right)=\frac{1}{3}+\frac{1}{3}+\frac{1}{3}+\frac{1}{3}-\frac{1}{3}=1 \\
& Q\left(q q q q_{f} \bar{q}_{f}\right)=Q(q q q)=-1,0 \text { or } 1 \\
& S\left(q q q q_{f} \bar{q}_{f}\right)=S(q q q)=0,-1,-2 \text { or }-3
\end{aligned}
$$

- same quantum numbers as ordinary baryons
- antiquark has unique flavor

$$
\begin{array}{ll}
q q q q \bar{Q}: & \\
B(q q q q \bar{Q})=\frac{1}{3}+\frac{1}{3}+\frac{1}{3}+\frac{1}{3}-\frac{1}{3}=1 & \\
Q(q q q q \bar{Q})=Q(q q q)=-2,-1,0,1,2 & \text { ddss } \bar{u} \\
S(q q q q \bar{Q})=-2,-1,0,+1 & \text { uudd } \bar{s}
\end{array}
$$

- exotic quantum numbers or combinations possible

Group classification of $q q q q \bar{q}$

- B.G. Wybourne, hep-ph/0307170
- antidecuplet and octet

Beyond Meson and Baryons

- Until a year ago many signals of narrow exotic resonances have appeared, but all disappeared after detailed studies again !
- ...for example the "famous" U-particle at $3100 \mathrm{MeV} / \mathrm{c}^{2}$ (diquonium)

WA62: $135 \mathrm{GeV} / \mathrm{c} \Sigma^{-}+\mathrm{Be}$

WA62 , Phys. Lett. B 172, 113 (1986)

```
U+
S/B = 45/50
\sigma}\cdot\textrm{BR}=4.8\pm1.4\pm0.8 \mu\textrm{b}/\textrm{Be
    U0
S/B = 19/28
\sigma}\cdot\textrm{BR}=1.2\pm0.7\pm0.2\mu\textrm{b}/\textrm{Be
U- P }\\overline{\textrm{p}}\mp@subsup{\pi}{}{+}\mp@subsup{\pi}{}{-
S/B = 62/187
\sigma}\cdot\textrm{BR}=3.0\pm1.7\pm0.5 \mu\textrm{b}/\textrm{Be
```


BIS 2: $135 \mathrm{GeV} / \mathrm{c} \mathrm{n}+\mathrm{A}$

- BIS 2 , Z.Phys. C 47, 533 (1990)

$$
\begin{aligned}
& U^{+} \rightarrow \Lambda \bar{p} \pi^{+} \pi^{+} \\
& U^{0} \rightarrow \Lambda \bar{p} \pi^{+} \pi^{-} \\
& U^{0} \rightarrow \Lambda \bar{p} \pi^{+} \pi^{+} \pi^{-}
\end{aligned}
$$

1. Experimental facts Part 1: $\Theta^{+}(1540)$

How to make a Pentaquark $\Theta^{+}(1540)$

- exclusive:

$$
\begin{aligned}
\gamma \mathrm{n} \rightarrow \mathrm{~K}^{-} \Theta^{+} & \rightarrow \mathrm{K}^{-} \mathrm{K}^{+}(\mathrm{n}) \quad \text { Spring-8 } \\
& \rightarrow \mathrm{K}^{-} \mathrm{K}^{0}(\mathrm{p}) \\
\gamma \mathrm{p} \rightarrow \mathrm{~K}^{0} \Theta^{+} & \rightarrow \mathrm{K}^{0} \mathrm{~K}^{0}(\mathrm{n}) \\
& \rightarrow \mathrm{K}^{0} \mathrm{~K}^{0}(\mathrm{p}) \quad \text { JLAB } \\
\mathrm{pp} \rightarrow \Theta^{+} \Sigma^{+} & \rightarrow \mathrm{pK}^{0}\left(\Sigma^{+}\right) \quad \operatorname{COSY}
\end{aligned}
$$

- baryon can be detected (easy: p) or can be reconstructed from missing mass (diffcult: n)
- inclusive:

$$
\begin{array}{lll}
\gamma \mathrm{d} \rightarrow \Theta^{+} \mathrm{X} & \rightarrow \mathrm{~K}^{0} \mathrm{p}(\mathrm{X}) & \text { HERMES } \\
\mathrm{pp} \rightarrow \Theta^{+} \mathrm{X} & \rightarrow \mathrm{~K}^{0} \mathrm{p}(X) & \text { CERN } \\
\mathrm{K}^{+} \mathrm{Xe} \rightarrow \Theta^{+} \mathrm{Xe} & \rightarrow \mathrm{~K}^{0} \mathrm{p}(\mathrm{Xe}) & \text { ITEP } \\
+ \text { many more } & &
\end{array}
$$

$S \quad P$ ring-8 gety Siring-8

Thi digeneration synchrotron radation facilty Circumference: 1436 m

LEPS @ SPring-8 (1)

3 T. Nakano et al., Phys. Rev. Lett. 91, 012002 (2003)

- Compton backscattering of photons, $\mathrm{E}_{\gamma}=1.5-2.4 \mathrm{GeV}$
- plastic scintillator (C:H=1:1)
- por nfrom missing mass of $\mathrm{N}\left(\gamma, \mathrm{K}^{+} \mathrm{K}^{-}\right) \mathrm{X}$
- Cuts
- total
$4.3 \cdot 10^{7}$
- K+K- pair
8000
- SC target
- $\mathrm{E}_{\gamma}<2.35 \mathrm{GeV} 3200$
- [0.9<M(N)<0.98] 1800
- $M(K K) \notin[1.00,1.04] 270$
- $\neg \gamma \mathrm{p} \rightarrow \mathrm{K}^{+} \mathrm{K}^{-} \mathrm{p} 109$
- $M\left(\Theta^{+}\right)=1540 \mathrm{MeV}$
- $\mathrm{\Gamma} \leq 25 \mathrm{MeV}$
- 4.6 σ significance

DIANA @ ITEP (2)

3 V.V. Barminet al., Phys. Atom. Nucl. 66, 1715 (2003)

- bubble chamber, $\mathrm{K}^{+} \mathrm{Xe} \rightarrow \mathrm{K}^{0} \mathrm{pXe}{ }^{\prime}$
- $\left\langle\mathrm{p}_{\mathrm{K}+}\right\rangle=470 \mathrm{MeV} / \mathrm{c}$

$$
K^{+} n \rightarrow \Theta^{+} \rightarrow K^{0} p
$$

- $M(\Theta+)=1539 \pm 2 \mathrm{MeV}$
- $\Gamma \leq 9 \mathrm{MeV}$
- 4.4σ significance

CLAS (d) @ TNAF (3)

3 S. Stepanyan et al.,
Phy. Rev. Lett. 91, 252001 (2003)

- $\gamma \mathrm{d} \rightarrow \mathrm{K}^{+} \mathrm{K}^{-} \mathrm{p}(\mathrm{n}) ; \mathrm{n}$ from missing mass

- $\mathrm{M}\left(\Theta^{+}\right)=1542 \mathrm{MeV}$
- $\Gamma \leq 21 \mathrm{MeV}$
- 5.8σ significance

Is the Θ^{+}a reflection?

- Reflections von f_{2}, ρ_{3}
- A.R. Dzierba et al.,hep-ph/0311125
- total energy w of the KKN System in CLAS experiment: $w=2.1-2.6 \mathrm{GeV}$
- angular distribution \otimes w-distribution

SAPHIR @ ELSA (4)

J. Barth et al., Phys. Lett. B 572, 127 (2003)

$$
\gamma p \rightarrow K_{s}^{0} \Theta^{+} \rightarrow K_{s}^{0} K^{+} n
$$

- 5.2σ significance
$\operatorname{mass}\left(\mathrm{nK}^{+}\right) / \mathrm{GeV}$
- no signal in $\Theta^{++} \rightarrow K^{+} p \Rightarrow$ suggests isoscalar state
- $\sigma\left(\Theta^{+}\right): \sigma\left(\Lambda_{1520}\right)=60 \mathrm{nb}:(800-1200) \mathrm{nb} \approx 1: 15$

vCC interactions @ CERN (5)

3 A.E. Asratyan et al., hep-ex/0309042

- reanalysis of neutrino data collected at CERN in bubble chambers (WA21, WA25, WA59, E180, E632)
- targets: p, d, Ne
- dominated by Ne

CLAS (p) @ TNAF (6)

HERMES @ DESY (7)

3 A. Airapetian et al., hep-ex/0312044

- $\gamma \mathrm{d} \rightarrow \mathrm{K}^{0} \mathrm{p} X$

- $M(\Theta+)=1528 \pm 2.6 \pm 2.1 \mathrm{MeV}$
- $\Gamma=19 \pm 5 \pm 2 \mathrm{MeV}$
$\mathbf{M}\left(\pi^{+} \pi^{-} \mathbf{p}\right)[\mathbf{G e V}]$
- $4-6 \sigma$ significance
- no Θ^{++}seen
$(62 \pm 11) n b \approx 2: 1$

SVD (8)

0^{\star} A.Aleev et al., hep-ex/

- $70 \mathrm{GeV} \mathrm{p}+\mathrm{C}, \mathrm{Si}, \mathrm{Pb} \rightarrow \mathrm{pK}^{0}+\mathrm{X}$

- no significant A dependence: consistent with $\propto A^{0.7}$

COSY-TOF (9)

external beam at COSY; $2000+2002$ data

- $\mathrm{pp} \rightarrow \mathrm{pK}^{0}\left(\Sigma^{+}\right)$
- $\mathrm{p}_{\mathrm{p}}=2.85,2.95$ and $3.2 \mathrm{GeV} / \mathrm{c}^{2}$
- $\sigma_{\mathrm{tot}}\left(2.95 \mathrm{GeV} / \mathrm{c}^{2}\right)=12.7 \mu \mathrm{~b}$

- $\Gamma_{\theta} \leq 25 \mathrm{MeV}$
- $\sigma=0.4 \pm 0.1$ (stat) ± 0.1 (sys) $\mu \mathrm{b}$

ZEUS (10)

S. Chekanov, hep-ex/0405013
$\mathrm{e}^{+} \mathrm{p}$ and $\mathrm{e}^{-} \mathrm{p}$

- c.m. energy 300-318 GeV
- $\mathrm{Q}^{2}>1 \mathrm{GeV}^{2}$

- signals in $\mathrm{K}^{0} \mathrm{p}$ and $\mathrm{K}^{0} \mathrm{pbar}$

M (GeV)

- 372土75 candidates
- 1522 ± 2 (stat) MeV
- $\Gamma=8 \pm 4$ (stat) MeV (from Monte Carlo expected 2 MeV)

JINR $\mathrm{C}_{3} \mathrm{H}_{8} \quad$ (11)

${ }^{\infty}$ P. Zh. Aslanyan et al., hep-ex/0403044

- $10 \mathrm{GeV} / \mathrm{c} \mathrm{p+C}_{3} \mathrm{H}_{8}$
- propane bubble chamber

JINR $\quad \mathrm{H}_{2}(12)$

hep-ex/0404003

- 1 m H 2 bubble chamber at JINR

$$
n p \rightarrow \mathrm{npK}^{+} \mathrm{K}^{-} \quad \mathrm{P}_{\mathrm{n}}=5.20 \mathrm{GeV} / \mathrm{c}
$$

PHENIX (preliminary) (13)

C. Pinkenburg, Quark Matter 2004
$d+A u, \sqrt{ }=200 \mathrm{GeV}$

- Excess at 1.54 GeV in $\overline{\mathrm{n}} \mathrm{K}^{-}$invariant mass
- $\Gamma_{\Theta} \leq 6 \mathrm{MeV} \approx \Gamma_{\wedge}$
- "We ain't saying it's there and we ain't saying it's not there."

PHENIX (update)

proceedings: nucl-ex/0404001

- timing corrections
nK․ PHENIX PRELIMINARY

Currently it is unclear what mechanism is behind the appearance of the peak at $1.54 \mathrm{GeV} / \mathrm{c}^{2}$ and whv the control $\mathrm{K}^{+} \bar{n}$ invariant mass distribution did not exhibit the s Don't stop when you see what you expect. neutron capal sigma

Try to disprove yourself! d antir their

Summary of published Observation

"Poor Mans" High Statistics Experiment

- Adding all spectra
- fine binning (0.25 MeV) because of different bin limits
- equal distribution of counts within an original bin
- adding corresponding sub-bins
- re-binning in 10 resp. 15 MeV bins

Experimental status of $\Theta^{+}(1540)$

- Presently 12 experiments have seen a signal around $1.54 \mathrm{GeV} / \mathrm{c}^{2}$
- 9 published
- 3 preliminary

Summary of published Observations

The unseen $\Theta^{+}(1540)$???

- pointed out by V.D. Burkert, Pentaquark 2003 Workshop

- $\mathrm{K}^{+} \mathrm{p}$ interactions at $\mathrm{p}_{\mathrm{K}}=1.2-1.7 \mathrm{GeV} / \mathrm{c}$
- A. Berthon, Nucl. Phys. B 63, 54 (1973)

The unseen $\Theta^{+}(1540)!$

- A. Berthon, Nucl. Phys. B 63, 54 (1973)

Beware of low statistics!

- one has to use Poisson statistics
S.I. Bityukov NIM 452, 518 (2000)
- the statistical significance of a peak depends on the number of histogram one looked at during the search see e.g. M. Zavertyaev, hep-ph/0311250

New LEPS experiment 2004: $\gamma \mathrm{d} \rightarrow \mathrm{K}^{+} \mathrm{K} \cdot \mathrm{h}^{2}$

Ken Hicks (Ohio University), Denver APS Meeting, May 2, 2004

- - -peak:
- 2003: 18 events
- 2004: ~100 events
- (x5-10 fold statistics)
- But: Why is the signal:background ratio so much smaller?
- we better wait for the final paper!

HERA-B (preliminary)

T. Knöpfle, Quark Matter 04, Oakland, January 11-17, 2004

- p+C, Ti, W; $p_{p}=920 G e V / c$
- expected mass resolution for $\delta \mathrm{M}\left(\Theta^{+}\right)=3.2 \pm 0.2 \mathrm{MeV}$

- at mid rapidity $\Theta^{+}(1540) / \wedge(1520)<0.002$
- F. Becattini et al., hep-ph/0310049: $\Theta^{+}(1540) / \wedge(1520) \sim 0.6$

OPAL

Georg Lafferty, 6. Jan 2004 (unpublished)

- www.hep.man.ac.uk/u/gdl/xmas.pp'
- Used 5M hadronic Zº decay events from the LEP 1 data sample
- Track combinations from displaced vertices make K_{s} candidates
- Use of dE/dx allows for proton identification
- Various other uninteresting standard cuts

DELPHI

T. Wengler, Moriond 2004

- XXXIXth Rencontres de Moriond - March 28th-April 4th 2004 QCD and Hadronic interactions at high energy
- http://moriond.in2p3.fr/QCD/2004/WednesdayAfternoon/Wengler.pdf
- hadronic Z decays

Nothing \rightarrow multiplicity limits

$$
\langle N(\Theta++)\rangle<0.006
$$

ALEPH (5)

DIS04

- 3.5M Hadronic Z decay
- $2800 \Lambda(1520)$

HYPER-CP (E871) (6)

M.J. Longo, QNP2004

- http://www.qnp2004.org/
- mixed beam (p, $\pi, \mathrm{K}, \mathrm{Y}$)
- $\mathrm{p}=120-250 \mathrm{GeV} / \mathrm{c}$
- pos. and neg. beam
- mass resolution <2MeV

The ratio of θ^{+}to total K^{0}, p is $<0.25 \%$ at 90% confidence level. This is compared to $2-8 \%$ for $\theta^{+} \rightarrow K^{0}, p$ sightings

E690

- D. Christian, QNP 2004
- pK_{s} in $800 \mathrm{GeV} / \mathrm{c} \mathrm{pp} \rightarrow \mathrm{pK}_{\mathrm{s}} \mathrm{K}^{-} \pi^{+} \mathrm{p}$
- Monte Carlo pKs ma: 225
- $5000 \Lambda(1520)$ abov ϵ

BABAR

J. Coleman, 2004 APS April meeting

- $\mathrm{e}^{+} \mathrm{e}^{-}, \operatorname{sqrt}(\mathrm{s})=10.58 \mathrm{GeV}$
- $98000 \Lambda_{\mathrm{c}}(2285)$

Ghost tracks (HYPER-CP)

- ghost tracks can cause a peak around 1540 MeV
- postive track from $\Lambda \rightarrow \mathrm{p} \pi^{-}$is used twice (as proton and π^{+})
- final „ghost" state $\mathrm{p} \pi^{+} \pi^{-}$

Status of Width Γ_{Θ}

- Θ^{+}-Experiments
- in most experiments the observed width is compatible with the experimental resolution (FWHM)

SPring8	<25	DIANA	<9
CLAS (d)	<21	SAPHIR	<25
ITEP (n)	<20	CLAS (p)	<26
SVD	<24	COSY-TOF	<18

- some indications for width $\approx 10 \mathrm{MeV}$
HERMES: $\quad \Gamma=19 \pm 5 \pm 2 \mathrm{MeV} \quad \mathrm{MC}: 14.3 \mathrm{MeV}$

ZEUS: $\quad \Gamma=10 \pm 2$ (stat) MeV MC: 4 MeV

- From KN scattering data
- R.A. Arndt et al., nucl-th/0311030
- J. Haidenbauer et al., hep-ph/0309243
\triangleright examined $\mathrm{K}^{+} p$ and $\mathrm{K}^{+} \mathrm{d}$ scattering database
\triangleright no structure in present data at $\mathrm{p}_{\mathrm{Lab}, \mathrm{K}} \approx 0.44 \mathrm{GeV} / \mathrm{c}$
\triangleright Compatible with a resonance around 1540 MeV only if $\Gamma_{\Theta}<1 \mathrm{MeV}$

2. Theoretical situation

"Everything should be made as simple as possible, but not simpler."
A. Einstein

The Boom of theoretical papers

What are these Peaks?

- KN molecular interpretation unlikely
- Θ is above the KN threshold by 105 MeV ; width $<10 \mathrm{MeV}$
- assume simple potential scattering
\triangleright width and depth of a potential is related to position and width of resonance
\triangleright for illustration: p-wave
\triangleright width of potential $\approx 0.05 \mathrm{fm}$
- but
- typical scale of strong interaction 1 fm
- no mechanism known to produce a resonance at $r \approx 0.05 \mathrm{fm}$ unless high L waves involved
\triangleright D.E. Kahana and S.H. Kahana, hep-ph/0310026
- even if possible: kaon and nucleon
 would loose their identity at $\mathrm{r}=0.05 \mathrm{fm}$
- K $\pi \mathrm{N}$ molecule
- P. Bicudo and M. Marques, hep-ph/0308078
- $\mathrm{m}\left(\mathrm{K}^{+}\right)+\mathrm{m}(\pi)+\mathrm{m}(\mathrm{N}) \approx 1570 \mathrm{MeV}$
- binding energy of 30 MeV typical
- possible but: implies bound $\pi \mathrm{K}$ system (not observed so far)
\triangleright T. Kishimoto and T. Sato, hep-ex/0312003

What are these Peaks (if they are real)

- What can it be:

$$
K^{+}(u \bar{s}) n(u d d)
$$

- decay into a baryon $\quad \Rightarrow$ It must be a baryonic system
- the small width $<10 \mathrm{MeV} \quad \Rightarrow$ must decay via strong interaction
- strong decay conserves strangeness
\Rightarrow particle must contain strange antiquark
- minimal quark configuration
$u u d d \bar{s}$
- is the mass of $\Theta^{+}(1540)$ consistent with a pentaquark state?
- naïve quark model:

$$
m\left(\Theta^{+}\right)=350 \times 4+500=1900 \mathrm{MeV}
$$

- need additional „interaction" between quarks
\triangleright solitons
\triangleright diquarks
- ...

Pentaquarks in Lattice QCD

A study of pentaquarks on the lattice with overlap fermions

N. Mathur ${ }^{a}$, F.X. Lee ${ }^{b, c}$, A. Alexandru ${ }^{a}$, C. Bennhold ${ }^{b}$, Y. Chen ${ }^{d}$,
S.J. Dong ${ }^{a}$, T. Draper ${ }^{a}$, I. Horváth ${ }^{a}$, K.F. Liu ${ }^{a}$, S. Tamhankar ${ }^{a}$, J.B. Zhang ${ }^{e}$
${ }^{a}$ Department of Physics 83 Astronomy, University of Kentucky, Lexington, KY 40506, USA
${ }^{b}$ Center for Nuclear Studies, Department of Physics,
The George Washington University, Washington, DC 20052, USA
${ }^{\text {c }}$ Jefferson Lab, 12000 Jefferson Avenue, Newport News, VA 23606, USA
${ }^{d}$ Institute of High Energy Physics, Academia Sinica, Beijing 100039, P.R. China
${ }^{e}$ CSSM and Department of Physics, University of Adelaide, SA 5005, Australia

Abstract

We present a quenched lattice QCD calculation of spin- $1 / 2$ five-quark states with uudd \bar{s} quark content for both positive and negative parities. We do not observe any bound pentaquark state in these channels for either $I=0$ or $I=1$. The states we found are consistent with KN scattering states which are checked to exhibit the expected volume dependence of the spectral weight. The results are based on overlap-fermion propagators on two lattices, $12^{3} \times 28$ and $16^{3} \times 28$, with the same lattice spacing of 0.2 fm , and pion mass as low as $\sim 180 \mathrm{MeV}$.

PACS numbers: $12.38 . \mathrm{Gc}, 14.20 . \mathrm{Gk}, 11.15 . \mathrm{Ha}$

I. INTRODUCTION

Since the reported discovery [1] two years ago of an exotic 5-quark resonance, named $\Theta^{+}(u u d d \bar{s})$, with a mass of about 1540 MeV and a narrow width of less than 20 MeV , there has been a rapid growth of interest in the subject. More independent experiments have reported the observation of the state [2]. It also stimulated the search for other pentaquarks [3]. It should be pointed out, however, that there are also a number of experiments reporting negative results [4]. One has to wait for high statistics experiments to clarify the situation in order to establish the exotic state beyond doubt.

The strangeness quantum number of Θ^{+}is $S=+1$, but its isospin and spin-parity assignments are undetermined by the experiments. Based just on the valence quark content, the isospin could be 0,1 , or 2 . The spin-
figuration of a product of color-neutral meson and baryon interpolation fields,

$$
\begin{equation*}
\chi_{1}^{\mp}=\epsilon^{a b c}\left(u^{T a} C \gamma_{5} d^{b}\right)\left[u^{c}\left(\bar{s}^{e} \gamma_{5} d^{e}\right) \mp\{u \leftrightarrow d\}\right], \tag{1}
\end{equation*}
$$

where sum over all the color indices $\{a, b, c, e\}$ is implied. The minus sign is for isospin $\mathrm{I}=0$ and plus sign for $\mathrm{I}=1$ respectively. The explicit spin-parity of this interpolating field is $\frac{1}{2}^{-}$. By explicit, we mean the time-forward correlation with projection to the upper Dirac component using the $\left(1+\gamma_{4}\right)$ projector. A slight variation with a different color contraction is given by

$$
\begin{equation*}
\chi_{2}^{\mp}=\epsilon^{a b c}\left(u^{T a} C \gamma_{5} d^{b}\right)\left[u^{e}\left(\bar{s}^{e} \gamma_{5} d^{c}\right) \mp\{u \leftrightarrow d\}\right], \tag{2}
\end{equation*}
$$

where the color indices e and c are positioned differently. Both interpolation fields in Eq. (1) and Eq. (2) have been used in lattice calculation to study the pentaquark

3. Experimental facts Part 2: 三(1860)

"The first principle is that you must not fool yourself--and you are the easiest person to fool. So you have to be very careful about that. After you've not fooled yourself, it's easy not to fool other scientists."

Richard Feynman
Cargo Cult Science (1974)

NA49: Observation of Ξ^{--}Pentaquark

$\underbrace{s s d} \underbrace{d \bar{u}}$
 $\Xi^{-} \pi$

C. Alt, ${ }^{9}$ T. Anticic, ${ }^{20}$ B. Baatar, ${ }^{8}$ D. Barna, ${ }^{4}$ J. Bartke, ${ }^{6}$ M. Behler, ${ }^{13}$ L. Betev, ${ }^{10,9}$ H. Białkowska, ${ }^{18}$ A. Billmeier, ${ }^{9}$ C. Blume, ${ }^{7,9}$ B. Boimska, ${ }^{18}$ M. Botje, ${ }^{1}$ J. Bracinik, ${ }^{3}$ R. Bramm, ${ }^{9}$ R. Brun, ${ }^{10}$ P. Bunčić, ${ }^{9,10}$ V. Cerny, ${ }^{3}$ P. Christakoglou, ${ }^{2}$ O. Chvala, ${ }^{15}$ J.G. Cramer, ${ }^{16}$ P. Csató, ${ }^{4}$ N. Darmenov, ${ }^{17}$ A. Dimitrov, ${ }^{17}$
P. Dinkelaker, ${ }^{9}$ V. Eckardt, ${ }^{14}$ G. Farantatos, ${ }^{2}$ P. Filip, ${ }^{14}$ D. Flierl, ${ }^{9}$ Z. Fodor, ${ }^{4}$ P. Foka, ${ }^{7}$ P. Freund, ${ }^{14}$ V. Friese, ${ }^{7,13}$ J. Gál, ${ }^{4}$ M. Gaździcki, ${ }^{9}$ G. Georgopoulos, ${ }^{2}$ E. Gładysz, ${ }^{6}$ S. Hegyi, ${ }^{4}$ C. Höhne, ${ }^{13}$ K. Kadija, ${ }^{20}$
A. Karev,,14 S. Kniege, ${ }^{9}$ V.I. Kolesnikov, ${ }^{8}$ T. Kollegger, ${ }^{9}$ R. Korus, ${ }^{12}$ M. Kowalski, ${ }^{6}$ I. Kraus, ${ }^{7}$ M. Kreps, ${ }^{3}$ M. van Leeuwen, ${ }^{1}$ P. Lévai, ${ }^{4}$ L. Litov, ${ }^{17}$ M. Makariev, ${ }^{17}$ A.I. Malakhov, ${ }^{8}$ C. Markert, ${ }^{7}$ M. Mateev, ${ }^{17}$
B.W. Mayes, ${ }^{11}$ G.L. Melkumov, ${ }^{8}$ C. Meurer, ${ }^{9}$ A. Mischke, ${ }^{7}$ M. Mitrovski, ${ }^{9}$ J. Molnár, ${ }^{4}$ St. Mrówczy ński, ${ }^{1}$
G. Pálla, ${ }^{4}$ A.D. Panagiotou, ${ }^{2}$ D. Panayotov, ${ }^{17}$ K. Perl, ${ }^{19}$ A. Petridis, ${ }^{2}$ M. Pikna, ${ }^{3}$ L. Pinsky, ${ }^{11}$ F. Pühlho ${ }^{f}$
J.G. Reid, ${ }^{16}$ R. Renfordt, ${ }^{9}$ W. Retyk, ${ }^{19}$ C. Roland, ${ }^{5}$ G. Roland, ${ }^{5}$ M. Rybczyński, ${ }^{12}$ A. Rybicki, ${ }^{6,10}$ A. Sa,
H. Sann, ${ }^{7} \cdot{ }^{*}$ N. Schmitz, ${ }^{14}$ P. Seyboth, ${ }^{14}$ F. Siklér, ${ }^{4}$ B. Sitar, ${ }^{3}$ E. Skrzypczak, ${ }^{19}$ G. Stefanek, ${ }^{12}$ R. S
H. Ströbele, ${ }^{9}$ T. Susa, ${ }^{20}$ I. Szentpétery, ${ }^{4}$ J. Sziklai, ${ }^{4}$ T.A. Trainor, ${ }^{16}$ D. Varga, ${ }^{4}$ M. Vassiliou, ${ }^{2}$ G.I.
G. Vesztergombi, ${ }^{4}$ D. Vranić, ${ }^{7}$ A. Wetzler, ${ }^{9}$ Z. Włodarczyk, ${ }^{12}$ I.K. Yoo, ${ }^{7}$ J. Zaranek, ${ }^{9}$ and J. 7
(NA49 Collaboration)
${ }^{\text {'N }}$ NIKHEF, Amsterdam, Netherlands.
${ }^{2}$ Department of Physics, University of Athens, Athens, Greece.
${ }^{3}$ Comenius University, Bratislava, Slovakia.
${ }^{4}$ KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hunga ${ }^{5}$ MIT, Cambridge, MA, USA.
${ }^{6}$ Institute of Nuclear Physics, Cracow, Poland.
${ }^{7}$ Gesellschaft für Schwerionenforschung (GSI), Darmstadt, German
${ }^{8}$ Joint Institute for Nuclear Research, Dubna, Russia.
${ }^{9}$ Fachbereich Physik der Universität, Frankfurt, Germany. ${ }^{10}$ CERN, Geneva, Switzerland.
${ }^{11}$ University of Houston, Houston, TX, USA.
${ }^{12}$ Świetokrzyska Academy, Kielce, Poland.
${ }^{13}$ Fachbereich Physik der Universität, Marburg, Gerr
${ }^{14}$ Max-Planck-Institut für Physik, Munich, Germ
${ }^{15}$ Institute of Particle and Nuclear Physics, Charles University. F

Observation of the $\Xi^{--}(1862)$ by NA49

The WA89 Experiment

- Σ^{-}and π - beam of $340 \mathrm{GeV} / \mathrm{c}$, n-beam of $260 \mathrm{GeV} / \mathrm{c}$
- C, Cu targets
- 1993, 1994 data taking
- $4 \cdot 10^{8}$ interactions (NA49: $6.5 \cdot 10^{6}$ events)

TRD: beam identification
Si- μ-strip vertex near target
MWPC: tracking
RICH: π / K separation

TRD	DC.mWPC Target area
Decay area	

Glag

Hod 2
RICH

Calorlmeters

Cross sections

- more than 20 different strange and charmed hadrons are analyzed under identical conditions
- typical statistical distribution with slope ~ 150 MeV

Ξ^{-}production

- Ξ^{-}- $\Lambda^{0} \pi^{-}$

$$
\Leftrightarrow \mathrm{p} \pi^{-}
$$

$\Xi^{* 0}(1690)$ ゆ $\Xi^{-} \pi^{+}$

- $\Xi^{* 0(1690)}$ ค $\Xi^{-\pi^{+}}$

- $\mathrm{M}\left(\Xi^{*}\right)=1685 \pm 4 \mathrm{MeV} / \mathrm{c}^{2}$
- $\Gamma=10 \pm 6 \mathrm{MeV} / \mathrm{c}^{2}$
- $\sigma \cdot B R=6.8 \pm 0.2 \mu \mathrm{~b}$

Euro. Phys. J. C 5, 621 (1998)

$\Xi^{-} \pi^{-} @$ WA89 (final result)

- hep-ex/0405042
- $676000 \Xi^{-}$ $\Xi^{-} \rightarrow \Lambda \pi^{-} \rightarrow p \pi^{-} \pi^{-}$ π^{-}from Ξ^{-}decay reconstructed as double track
- if relative detection efficiencies are similar

$$
\left.\left.\frac{\varepsilon\left(\Xi^{--}\right)}{\varepsilon\left(\Xi^{-}\right)}\right|_{\text {WA89 }} \approx \frac{\varepsilon\left(\Xi^{--}\right)}{\varepsilon\left(\Xi^{-}\right)}\right|_{\text {NA49 }}
$$

we would expect
$17000 \Xi^{-}(1860) \rightarrow \Xi^{-} \pi^{-}$
25000

$\Xi^{-} \pi^{-} @$ WA89

- hep-ex/0405042
- different kinematic cuts

$$
x_{F}=\frac{2 p_{L}^{C M}}{\sqrt{S}}
$$

Limits for cross section

- tried x_{F}-cuts, p_{t}-cuts, angle-cuts...
- extrapolation to cross section per nucleon

$$
\sigma_{\text {nucl }}=\sigma_{0} \cdot A^{2 / 3}
$$

- $0.15<\mathrm{x}_{\mathrm{F}}<0.9$
- C target: $\quad B R \cdot \sigma_{\text {nucl }}<16 \mu b$
$\mathrm{BR} \cdot \sigma_{0}<3.1 \mu \mathrm{~b}$
- Cu target: $\quad B R \cdot \sigma_{\text {nucl }}<55 \mu \mathrm{~b}$ BR $\cdot \sigma_{0}<3.5 \mu b$
- Other cross sections ($0<x_{F}<1$)
- E-(1320): $\sigma_{0}=1000 \mu \mathrm{~b}$
- $\bar{E}^{0}(1530): \sigma_{0}=200 \mu \mathrm{~b}$
- E-(1820): BR $\cdot \sigma_{0}=20 \mu \mathrm{~b}$
- E-(1950): BR $\cdot \sigma_{0}=12 \mu \mathrm{~b}$

NA49 vs. WA89

- What is different between

- target:
- beam energy:
p
158 GeV
and WA89?
$\leftrightarrow \quad \mathrm{C}$ or Cu
$\leftrightarrow \quad 340 \mathrm{GeV}$
\triangleright all known cross section have smoth beam momentum dependence in this energy regime
- beam:
p \{uud\} $\quad \leftrightarrow \quad \Sigma^{-}$\{dds\}
$\triangleright \Sigma^{-}$has probably [ds] diquark structure [also possible for E-(1860)] $^{-}$
\triangleright no penalty factor compared to E^{-}production expected
$\rightarrow X_{F}$ range for observed $\Xi^{-}: \quad[-0.25,+0.25] \leftrightarrow \quad[0.1,1]$

Interesting situation!

- if the $\Xi^{--}(1860)$ exists it has an exotic production mechanism
- what about other experiments?

HERA-B (preliminary)

T. Knöpfle, Quark Matter 04, Oakland, January 11-17, 2004

- $\mathrm{p}+\mathrm{C}, \mathrm{Ti}, \mathrm{W} ; \mathrm{p}_{\mathrm{p}}=920 \mathrm{GeV} / \mathrm{c}$
- C: 76M events
- Ti: 16 M events
- W: 72M events
- 11000 ミ-
- resolution: 2.6 MeV

ZEUS

S. Chekanov, DIS04, hep-ex/0405013

- e-p, $\sqrt{ }$ s=300-318GeV
- $1361 \Xi^{-}$

ZEUS

ALEPH

P. Hansen, DIS04

- 3.5M Hadronic Z decay
- $3350 \Xi^{-}$

« Igor Goreloc, DIS04
- $19150 \Xi^{-}$
- $18 \times$ statistics of NA49

BABAR

0^{∞} V. Halyo, 2004 APS April meeting

- $\mathrm{e}^{+} \mathrm{e}^{-}, \operatorname{sqrt}(\mathrm{s})=10.58 \mathrm{GeV}$
- $258000 \Xi^{-}$

Summary of $X^{-}(1860)$

Experiment	number of Ξ^{-}	
e	NA49	1640 (incl. bg)
J	WA89	676000
J	HERA-B	11000
J	ZEUS	1361
J	ALEPH	3350
J	CDF	19150
J	BABAR	258000

Last but not least...

- H1 collaboration, hep-ex/0403017
- predicted mass $\mathrm{M}\left(\Theta_{\mathrm{c}}\right)=2704 \mathrm{MeV} / \mathrm{c}^{2}$
- Bin Wu \& Bo-Qiang Ma, hep-ph/0402244

- not seen by ZEUS and CDF

Summary

pro
$\Theta^{+}(1530)$
$\Xi(1860)$
$\Theta_{c}(2704)$
1
1
contra

$$
12: 8
$$

6
2

Quintessence

- On the experimental side...
- The number of experiments, which have seen signatures of the $\Theta^{+}(1540)$ is quite impressive
...but
- So far only low statistics experiments have seen signals for pentaquarks
- No experiment has seen both decay channels of the $\Theta^{+}(1540)$
- Masses of the observed peaks are barely consistent
- Consistency with KN scattering data not clear
- All present high statistics searches for the observed structures have failed so far
- It would be extremely surprising if the pentaquarks were only produced in specific reactions
- New experiments are scheduled to confirm the Θ^{+}in reactions where they were seen before
- Spring-8, JLAB, ELSA, COSY...
- typical improvement: factor 10
- ...let's wait for the final result

The Myth of Sysiphus

"The struggle itself toward the heights is enough to fill a man's heart. One must imagine Sisyphus happy."

Albert Camus (1955)

Cargo Cult Science

- Richard Feynman

From a Caltech commencement address given in 1974
(Also in Surely You're Joking, Mr. Feynman!)

- ...the idea is to give all of the information to help others to judge the value of your contribution; not just the information that leads to judgement in one particular direction or another.
- The first principle is that you must not fool yourself--and you are the easiest person to fool. So you have to be very careful about that. After you've not fooled yourself, it's easy not to fool other scientists.
- If you've made up your mind to test a theory, or you want to explain some idea, you should always decide to publish it whichever way it comes out. If we only publish results of a certain kind, we can make the argument look good. We must publish BOTH kinds of results.

