Pretite VI. with 146

Pillars of Hadron Physics

HADRONS Bridg FN QUARKS And StARS

MOtivation
HADRONS in COLD NUCLEI
ANTIKAONS
ANTIBARYONS
EXOTIC HYPERNUCLEI
Conclusion

Bundesministerium für Bildung und Forschung

Motivation

Chí a una sola è fedele verso l'altre è crudele

Wer nur einer treu ist, ist gegen die anderen grausam

Don Giovanni

The Core of a Neutronstar

...even more speculations: supersymmetric baryons
 S. Balberg *et al.*, The Astrophysical Journal, 548:L179–L182 (2001)b

Observable Consequence

• Main consequence of hyperons and other exotica in neutron stars: softer EOS \Rightarrow lower mass and smaller central density

present data on neutron star masses do not exclude exotic cores
 simultaneous treatment of all possible ingredients (K,Y,q...) missing

Baryon stars

10⁻¹

10⁻³

10⁻⁴

Baryon fraction

N. K. Glendenning, Phys. Rev. C 64, 025801 (2001)

- beyond $2\rho_0$ Hyperons may play a significant role in neutron stars
- in the core hyperons may even be more abundant than neutrons
- needed: BB interaction at high density = at small distances

AntiKAONS IN NUCLEI

Glücklich preis ich, wer erfasset alles von der guten Seite, der bei Stürmen niemals erblasset, wählt Vernunft als Führerin.

Cosi fan tutte

K⁻-nucleus bound systems

- relevance
 - hadron masses in nuclear medium
 - astronomical objects
- starting point: ∧(1405) as K⁻p system
 - \Rightarrow K-nucleus bound states may be
 - deeply bound (~100MeV)
 - narrow (~20MeV)
 - dense (~5ρ₀)

- detection
 - missing mass (KEK,Jlab,MAMI-C)

 $\begin{array}{c} {}^{(3)4}He(_{stopped}K^{-},N)X \\ {}^{(3)4}He(e,e'K^{+})X \end{array} \end{array} \right\} X = (N)NNK^{-}$

 invariant mass (FINUDA,FOPI,WA89)

 $ppK^- \rightarrow \Lambda + p + 263 \text{MeV}$

 $ppnK^{-} \rightarrow \Lambda + d + 208 \text{MeV}$

Y. Akaishi and T. Yamazaki, PRC65, 044005 (2002)

A. Dote et al., PLB 590, 51 (2004)

Discovery of a strange tribaryon S(3115)

T. Suzuki et al., Phys. Lett. B. 597, 263 (2004)

supported by FOPI, Ni+Ni@1.93AGeV, N. Herrmann, EXA05

m=3159±20 MeV/c², Γ=100±45 MeV/c²

What about electroproduction?

ррК⁻→рЛ

► FINUDA, PRL 94,212303(2005)
 ► M=2.255GeV/c², Γ=67MeV

FOPI@GSI (N. Herrmann, Workshop Donnersberg 05)
 M_{FOPI}=2.165±0.007GeV/c² ≠ M_{FINUDA}=2.255±0.009GeV/c²

WA89@CERN

- GUTENBERG MAINZERSTÄT
- more than 20 different strange and charmed hadrons are analyzed under identical conditions
- examples (0<x_F<1) $\sigma_0 = \sigma_A / A^{2/3}$
 - ► Ξ⁻(1320): σ₀=1000μb
 - ► Ξ⁰(1530): σ₀=200μb
 - ► Ξ⁻(1820): BR · σ₀=20μb
 - ► Ξ⁻(1950): BR · σ₀ = 12μb
- Pentaquarks
 - ► $\Xi^{-}(1860)$: BR $\cdot \sigma_0 < 3\mu b$
 - Θ⁺(1530):BR · σ₀ < 1.8μb</p>
- First observation of Σ(1750)
 in a production experiment

p- Λ Correlations @WA89: ppK⁻→p Λ

Intermezzo

- K-nucleus bound states may be an unique tool to explore the meson-baryon interaction at large densities ${\sim}5\rho_0$
 - NNNK state looks promising but not yet settled
 - The NNK-states clearly needs further confirmation

if the NNNK and (hopefully) also NNK confirmed without doubt, a new field studying cold, dense nuclear systems with many different experimental approaches will open up – including FAIR and perhaps MAMI-C

AntiBAryonS IN NUCLEI

Führt diese beyden Fremdlinge, In unsern Prüfungstempel ein: Bedecket ihre Häupter dann -Sie müssen erst gereinigt seyn.

Zauberflöte

Traditional View of the N-N Interaction

- Experimental observation
 - (r<0.5fm) short range
 - intermediate (r≈1fm)
 - long range (r>1.5fm)
- Boson exchange model
 - Yukawa (1935)
 - Klein-Gordon equation

$$\left(\partial^2 + m^2\right)\varphi(x) = g\overline{\psi}\psi$$

repulsion strong attraction attraction

300 200 V [MeV] ω 100

pi

range of N-N interaction $R \approx 2 \text{fm}$

 $R=\hbar c/mc^2 \Rightarrow m \approx 100 MeV/c^2 \Rightarrow pion$

G-Parity and NN Potential

GUTENBERG MANZESTÄT

- strong interaction conserves isospin and C-parity
- G=charge conjugation + 180° rotation around 2nd axis in isospin
 - Lee und Yang 1956, L. Michel 1952 "Isoparity"
 - G-parity of particle-antiparticle multipletts

 $G | \mathbf{f} \overline{\mathbf{f}} \rangle = (-1)^{I} C | \mathbf{f} \overline{\mathbf{f}} \rangle = (-1)^{I+L+S} | \mathbf{f} \overline{\mathbf{f}} \rangle$ $G | \pi^{\pm 0} \rangle = (-1)^{1} C | \pi^{\pm 0} \rangle = - | \pi^{\pm 0} \rangle$ $G | \rho \rangle = (-1)^{1} C | \rho \rangle = + | \rho \rangle$ $G | \omega \rangle = (-1)^{0} C | \omega \rangle = - | \omega \rangle$ $G | \sigma \rangle = (-1)^{0} C | \sigma \rangle = + | \sigma \rangle$

- Hans-Peter Dürr and Edward Teller, Phys. Rev. 101, 494 (1956)
 - sign change in coupling constant

$$V(NN)(r) = \sum_{M} V_{M}(r) \rightarrow V(N\overline{N})(r) = \sum_{M} G_{M}V_{M}(r)$$

Elastic Antiproton-Nucleus Scattering

Elastic Scattering of Antiprotons from Complex Nuclei*

Gerson Goldhabert and Jack Sandweiss‡

Physics Department and Radiation Laboratory, University of California, Berkeley, California (Received May 5, 1958) pantiwith $\geq 2^{\circ}$.)

TABLE III. Comparison of experimental data for elastic antiproton-nucleus scattering of energy $T_{\bar{p}}=80$ to 200 Mev with Glassgold's calculations at $T_{\bar{p}}=140$ Mev. (Projected angle $\geq 2^{\circ}$.)

Angular interval (degrees)	Experimental $(T_{\overline{p}} = 80 \text{ to}$ 200 Mev)	Number of events Calculated for V = -15 Mev W = -50 Mev	Calculated for V = -528 Mey W = -50 Mey
2-6 6-12 12-24 24-180	54 20 5 1	$56 \\ 17.1 \\ 4.3 \\ 1.4$	71 24 10 9.5
2–180	80	78.8	114.5

Antiprotonproduction in HI Collisions

see e.g.

A. Sibirtsev, W. Cassing et al., Nucl. Phys. A 632, 131 (1998)

C. Spieles et al., Phys. Rev. C 53, 2011-2013 (1996)

Can we measure the potential for \overline{Y} ?

- ▶ $p + \overline{p} \rightarrow \Lambda + \overline{\Lambda}$ close to threshold in complex nuclei
- Question: is the momentum of the Λ and anti-Λ equal?
- ► If yes, Λ and anti-Λ that leave the nucleus will have different asymptotic momenta
 - the momentum difference is sensitive to the potential difference

- experimental complications
 - need to average over Fermi motion
 - leading effect
 - exclusiveness

 \Rightarrow need to look at average transverse momentum close to threshold of coincident $\Lambda\bar{\Lambda}$ pairs

Pair production in Nuclei: $\overline{p}^{12}C \rightarrow \overline{\Lambda}\Lambda \mathcal{N}^{*}$

MeV/c

600

800

400

200

103

102

10

Simulations: Antiproton momentum: 1.66 GeV

- Λ potential: -28MeV
- Fermi motion ($1s_{1/2}$ and $1p_{3/2}$ single-particle wf)
- angular distribution (leading effect)
- absorption (still crude)

A Closer Look...

Intermezzo

the (exclusive) production of B-B pairs in nuclei by antiproton beams may offer the possibility to study the behaviour of antibaryons in nuclei

 it will be interesting to look for relations between B-B and B-B interactions on a more fundamental (quark) level EXOTIC (Single) Hypernuclei

Das Meer ist friedlich, legen wir ab, alle Zeichen stehen günstig, ein glücklicher Ausgang ist uns beschieden, ja, die Reise mag beginnen.

Idomeneo

Baryon-baryon interaction

► Isospin dependence of Y-N and Y-Y interaction? ⇒ Information on hyperons in neutron rich matter/nuclei needed

Birth, life and death of a hypernucleus

International Hypernuclear Network

PANDA at FAIR

- Anti-proton beam
- Double Λ -hypernuclei
- γ-ray spectroscopy

MAMI C

1. A.

- Electro-production
- Single Λ -hypernuclei
- Λ -wavefunction

JLab

- Electro-production
- Single Λ -hypernuclei
- Λ-wavefunction

FINUDA at DAONE

- e⁺e⁻ collider
- Stopped-K⁻ reaction
- Single Λ -hypernuclei
- γ-ray spectroscopy

HypHI at FAIR Heavy ion beam Single Λ -hypernuclei At extreme isospins

Magnetic moments

J-PARC

- Intense K⁻ beam
- Single and double Λ -hypernuclei
- γ -ray spectroscopy for single Λ

Relativistic Hypernuclei

The HYPHI Project T. Saito

Magnetic moment of Λ in nuclei

- GUTENBERG MANZ
- Baryons do not "melt" in nuclei: quark effects are small
- EMC-effect: Whether there is any change in nucleon properties in nuclei remains controversial.
 - If mass and size of a baryons changes inside nuclei, also it's magnetic moment might change
 - If so, why? Meson current, $\Lambda \Sigma$ mixing, partial deconfinement...?

CONCLUSION

Und nun genug des schmeichelnden Lobes, Säumt euch nicht mit dem Werke der Liebe, Geht, und vollzieht eures Herzens Wünsche.

La Clemenza di Tito

Pillars of Hadron Physics

110

Beethoven Op 69i for Cello and Piano

Richard (Dick) Dalitz (1925-2006)

Wer nur einer treu ist, ist gegen die anderen grausam

Don Giovanni

The END

Thank you for your attention