

Bundesministerium für Bildung und Forschung

5.80

21-10

n

September , 2007

ане ане ане об ан Spectator Matter

THE

040

°He

014

He

+H

5H6

A. Botvina, J. Pochodzalla

Hypernuclei

NUFRA2007 – Kemer, Sep. 24 - Oct. 1, 2007

Physics topics of hypernuclei

in

lultifragmentation

- Section 2015 Present and Future Experimental Opportunities
- S Hypernuclei in Fragmentation Reactions
- Conclusion

- How do nucleons and nuclei form out of quarks?
- Can nuclear structure be derived (quantitatively) from QCD?
- Strange Hadrons in Nuclei and the Structure of QCD vacuum?
- Hypernuclei a bridge between traditional nuclear physics and hadron physics

UTTE LISA

Nature of emerging structures

G

Physics of Hypernuclei

- the (low energy) Y-N interactions
 - the role played by quark degrees of freedom, flavour symmetry and chiral models in nuclear and hypernuclear phenomena
 - the nuclear structure, e.g. the origin of the spin-orbit interaction
 - relevance for dense stellar systems
- Weak decays
 - baryon-baryon weak interactions
 - asymmetries of w.d. and the role of two-meson/ σ exchange
 - role of FSI and nuclear structure
- δ ΛΛ-hypernuclei
 - Y-Y interaction
 - $\Lambda \Lambda K$ vertex
- Solution nuclear medium properties of hyperons (Λ , Σ , Ξ) and (anti)meson

Physics of Hypernuclei

- the (low energy) Y-N interactions
 - the role played by quark degrees of freedom, flavour symmetry and chiral models in nuclear and hypernuclear phenomena
 - the nuclear structure, e.g. the origin of the spin-orbit interaction
 - relevance for dense stellar systems
- Weak decays
 - baryon-baryon weak interactions
 - asymmetries of w.d. and the role of two-meson/ σ exchange
 - role of FSI and nuclear structure
- ΔΛ-hypernuclei
 - Y-Y interaction
 - $\Lambda \Lambda K$ vertex
- nuclear medium properties of hyperons (Λ , Σ , Ξ) and (anti)meson

Strategy towards YN interaction

- hypernuclear fine structure
- angular distribution of γ –rays
- transition probability B(E2)
- Comparison to model calculations
 - s-shell hypernuclei: ^{3}H , ^{4}H , ^{4}He , ^{5}He ,...
 - rigorous few-body calculations, using the bare interactions
 - *p*-shell hypernuclei: ${}_{\Lambda}{}^{6}$ Li, ${}_{\Lambda}{}^{9}$ Be, ${}_{\Lambda}{}^{12}$ C, ${}_{\Lambda\Lambda}{}^{6}$ He, ${}_{\Lambda\Lambda}{}^{10}$ Be,...
 - cluster models (d, α) are efficient
 - medium and heavy hypernuclei: 89 Y ,...
 - mean field approach based on G-matrix +Thomas Fermi approximation

Understanding Nuclear Structure

- spin-isospin and tensor forces present in long-range one-pionexchange are essential
- Multi-nucleon forces are vital
- sub-MeV precission (~3 parameters only)

γ-spectroscopy – present status

γ-spectroscopy of p-shell hypernucle

Physics of Hypernuclei

- the (low energy) Y-N interactions
 - the role played by quark degrees of freedom, flavour symmetry and chiral models in nuclear and hypernuclear phenomena
 - the nuclear structure, e.g. the origin of the spin-orbit interaction
 - relevance for dense stellar systems
- Weak decays
 - baryon-baryon weak interactions
 - asymmetries of WD and the role of two-meson/ σ exchange
 - role of FSI and nuclear structure
- ΔΛ-hypernuclei
 - Y-Y interaction
 - $\Lambda \Lambda K$ vertex
- nuclear medium properties of hyperons (Λ , Σ , Ξ) and (anti)meson

Weak Decay of Λ Hypernuclei

Γ_n/Γ_p and the isospin structure of NMM Deres

Weak decay: Asymmtries and Γ_n/Γ_n gute

H. Outa, HYP2006

- π+K,OME can reproduce Γ_n/Γ_p ratio but predict large negative α^{NM}
- $_{\rm m}/\Gamma_{\rm p}$ and $\alpha^{\rm NM}$ can be reproduced by π +K+ σ +DQ model

 π/p

Physics of Hypernuclei

- the (low energy) Y-N interactions
 - the role played by quark degrees of freedom, flavour symmetry and chiral models in nuclear and hypernuclear phenomena
 - the nuclear structure, e.g. the origin of the spin-orbit interaction
 - relevance for dense stellar systems
- Weak decays
 - baryon-baryon weak interactions
 - asymmetries of w.d. and the role of two-meson/ σ exchange
 - role of FSI and nuclear structure
- δ ΛΛ-hypernuclei
 - Y-Y interaction
 - $\Lambda \Lambda K$ vertex

6 nuclear medium properties of hyperons (Λ , Σ , Ξ) and (anti)meson

Y-N or Y-Y Interaction in Hypernucleureneers

• Mass difference between Σ and Λ in single hypernuclei and $\Lambda\Lambda$, ΞN , $\Lambda\Sigma$ in double hypernuclei are small

- $m(\Xi^0 n)$ - $m(\Lambda\Lambda)$ =23MeV $m(\Sigma^0\Lambda)$ - $m(\Lambda\Lambda)$ =77MeV

 \Rightarrow mixing important

Weak Hyperon-Hyperon Interaction GUTENBERGA

- two-pion exchange
- ► two-nucleon induced decays ANN→NNN
- meson vs. direct quark process
- $^{6}_{\Lambda\Lambda}$ He: $\Lambda\Lambda \to \Lambda n$ \to access to weak $\Lambda\Lambda K$ vertex
 - A. Parreno, A. Ramos and C. Bennhold, Phys. Rev C 65, 015205 : 3.6%
 - K. Sasaki, T. Inoue, and M. Oka, Nucl.Phys. A726 (2003) 349-355: 0.2%
 - K. Itonaga, T. Ueda, and T. Motoba, Nucl. Phys. A691 (2001) 197c: 2.5%

Physics of Hypernuclei

- the (low energy) Y-N interactions
 - the role played by quark degrees of freedom, flavour symmetry and chiral models in nuclear and hypernuclear phenomena
 - the nuclear structure, e.g. the origin of the spin-orbit interaction
 - relevance for dense stellar systems
- Weak decays
 - baryon-baryon weak interactions
 - asymmetries of w.d. and the role of two-meson/ σ exchange
 - role of FSI and nuclear structure
- δ ΛΛ-hypernuclei
 - Y-Y interaction
 - $\Lambda \Lambda K$ vertex
- Solution nuclear medium properties of hyperons (Λ , Σ , Ξ) and (anti)meson

Magnetic moment of Λ in nuclei

- baryons do not "melt" in nuclei: quark effects are small
- EMC-effect: whether there is any change in nucleon properties in nuclei remains controversial
 - if mass and size of a baryons changes inside nuclei, also it's magnetic moment might change
 - if so, why? meson current, $\Lambda\Sigma$ mixing, partial deconfinement...?

Hypernuclei – Present Situation

International Hypernuclear Network

.

Hypernuclei – Present Situation

Future: high resolution γ-spectroscopy

- 2007: Letter of Intent
- 2008: completion of FINUDA physics program
- 2009: FINUDA upgrade; pilot run at DAΦNE (500 pb-1)
- 201X: ???

International Hypernuclear Network

Hypernuclei – Present Situation

International Hypernuclear Network

Hypernuclei – Present Situation

G

International Hypernuclear Network

Hypernuclei – Present Situation

Λ

Ξ

HE

OH

040

HypHI@GSI

atte

SHE

AH

He

AHe

3H

n

1

Production of hypernuclei in relativistic heavy ion collisions

К

production of many hyperons

"He

- multiple coalescence of hyperons with fragments
- (π, K) , (K, π) and (K^-, K^+) reactions on fragments

Physics of relativistic hypernuclei

- Sector Stress Hypernuclei with extreme isospin
 - lifetime
 - weak decays
 - hypermatter at finite temperature und low density
- Solution Magnetic moment of Λ inside nuclei by spin rotation

Relativistic Hypernuclei

Many predictions based on coalescence mode 6 M. Sano, INS-PT-31 (1982)

- J. Aichelin et al., PLB 274, 260 (1992) S. Hirenzaka et al., PRC 48, 2403 (1993)
- M. Wakai et al., PRC 38, 748 (1988)
- M. Sano and M. Wakai, PTP Suppl. 117, 99 (1994)
- Cross sections
 - local maximum at ~4AGeV
 - single Λ -hypernuclei ~0.1µb
 - $\Lambda\Lambda$ -hypernuclei ~0.01 nb

Projectile Fragmentation

- fragmentation of projectiles well understood
- short time ~100fm/c for primary fragment production
- freeze-out density is around $0.1\rho_0$
- high degree of equilibration at the freeze-out
- temperature 3-8MeV

Masses of hypernuclei

- Iiquid-drop description of fragments:
 - bulk, surface, symmetry, Coulomb (as in Wigner-Seitz approximation)

$$F_{A}^{Bulk}(T) = \left(-\omega_{0} - \frac{T^{2}}{\varepsilon_{0}}\right) \cdot A \qquad \qquad \omega_{0} = 16 MeV$$

$$\beta_{0} = 18 MeV$$

$$\beta_{0} = 18 MeV$$

$$T_{c} = 18 MeV$$

$$\gamma = 25 MeV$$

$$\gamma = 25 MeV$$

$$\varepsilon_{0} \approx 16 MeV$$

- hyperterm in binding energy
 - Samanta et al.
 - J. Phys. G 32, 363 (2006)
 - Liquid drop inspired
 A. Botvina and J.P. (2007)

$$F_{sam}^{hyp} = Y \cdot \left(-10.68 + \frac{48.7}{A^{2/3}}\right)$$
$$F_{LD}^{hyp} = \frac{Y}{A} \left(-10.68 + 21.27A^{2/3}\right)$$

Mass predictions for hypernuclei

Fragment distribution

- Multifragmentation of source A₀=100, Z₀=40, H₀=2 and temperature T
- General thermodynamical characteristics of the hypersystems (with small admixture of strangeness) are similar to the ones of conventional matter
 - production of large
 hypernuclei dominates at low
 excitation energies
 - smooth transition to small hypernuclei with increasing excitation energy;

Main Characteristics

Hypernuclei in Multifragmentation GUTENEERSTAT $\frac{2}{4} \int T=4 \text{ MeV}$ $\frac{2}{\sqrt{3}} \int 100-40 \text{ H}_0=2 \int F^{hyp}_{sam} = Y \cdot \left(-10.68 + \frac{48.7}{A^{2/3}}\right)$

relative yields reflect properties of mass formulae of hypernuclei

Hypernuclei with extreme isospin

GU

N/Z of projectile influences charge distribution of primary fragments

The HypHI Project at GSI

- To confirm Dubna's hypernuclear production at 2 A GeV with ⁶Li primary beams : Mesonic decay $\Lambda \rightarrow \pi^{-} + p$

The HYPHI Project T. Saito

- Substitution of the second second
- Worldwide, several new activities will help to overcome present limitations of this field
- Projectile fragmentation in energetic HI collisions allows to study nuclear systems containing hyperons at densities different from ρ_0
- Fragment distributions of hypernuclei show sensivities to hyperon mass formulae

A. Botvina and J.P., Phys. Rev C 76, 024909 (2007)

Bundesministerium für Bildung und Forschung

> 64.24 0-63.24

E3.00

⁶He

44

Es.

38.C.

°He

oH

S. T

13,83

He

40

Thank you!

30

"He

14 7BAB

240

State or

20

=He

2He

2Ho

14

3 [...]

AHe

3H

n

 Λ

