- CONCLUSION
- HYPERNUCLEI AT FAIR
- PHYSICS TOPICS OF HYPERNUCLEI
- INTRODUCTION

Landscape of Modern Nuclear Physics

Physics of Hypernuclei

- the Y-N and Y-Y strong interactions in the $J^{p} = 1/2^{+}$ baryon octet
- the role played by quark degrees of freedom, flavour symmetry and chiral models in nuclear and hypernuclear phenomena
- the nuclear structure, e.g. the origin of the spin-orbit interaction
- specific aspects baryon-baryon weak interactions
- possible existence of dibaryon particles
- hyperons (Λ , Σ , Ξ) and meson properties in the nuclear medium

Exp. Approaches to Y-N interactions

- Iow energy baryon-baryon scattering
 - N-N: ~10⁴ data points available
- ▶ for hyperon-nucleon only very few elastic data $\leq (\geq)300$ MeV/c

 - spin averaged → can not access LS or SS coupling
 - usually low statistics
 - ▷ Σ^- p: KEK-PS E289 (π^- ,K⁺) \Rightarrow 30 events
 - ▷ Σ^+ p: KEK-PS 251 & KEK-PS E289 (π^+, K^+) \Rightarrow 31 events each
 - ▷ Ξ⁻ p: (K⁻,K⁺)

 \Rightarrow 1 candidate

- JPARC: ~1000 events/day
- for Y-Y interaction not practical
 - Y-Y final state interaction
 - ▷ KEK-PS E224, Physics Letters B 444, 267 (1998)
 - ▷ KEK-PS E522: K.Nakazawa, HYP2006 (2006)
 - feasible but difficult to interpret (rescattering, size,...)
 - double hypernuclei

Λ - Λ Interaction

- ► Relative strength of attraction $|V_{\Lambda\Lambda}| < |V_{\Lambda N}| < |V_{NN}|$
- Interplay between gluon and meson exchange
- role of correlated two-meson exchange
- mixing

Fujiwara et al., nucl-th/0607013

Fernandez-Carames et al., PRD 72, 054008 (2005)

Y-N or Y-Y Interaction in Hypernuclei

- Mass difference between Σ and Λ in single hypernuclei and $\Lambda\Lambda$, ΞN , $\Lambda\Sigma$ in double hypernuclei are small
 - $m(\Xi^0 n) m(\Lambda \Lambda) = 23 MeV$ $m(\Sigma^0 \Lambda) m(\Lambda \Lambda) = 77 MeV$
- \blacktriangleright \Rightarrow mixing important

Y-N or Y-Y Interaction in Hypernuclei

 $YY \qquad P_{N\Xi} P_{\Delta\Sigma} P_{\Sigma\Sigma} P_{N\Xi} P_{\Delta\Sigma} P_{\Delta\Sigma} P_{\Sigma\Sigma} P_{N\Xi} P_{\Delta\Sigma} P_{\Sigma\Sigma}$

mND_S	0.06	0.25	0.00	4.56	2.49	0.06	0.28	1.17	0.05
NF_S	0.58	0.38	0.03	3.10	2.10	0.10	1.34	1.14	0.10

Understanding Nuclear Structure

- Steven Stephen C. Pieper et al., 2002
- potentials with increasing complexity

- spin-isospin and tensor forces present in long-range one-pionexchange are essential
- multi-nucleon forces are vital
- sub-MeV precission (~3 parameters only)

Nuclear Spectra in χEFT

GUTENBERG MANVERSITÄT

- great progress in recent years
 - e.g. Petr Navratil *et al.* (2005)
 - consistent (same cutoff parameter A) treatment of NN (N³LO) and NNN force (N²LO; from fit to ³H and ⁴He binding energies)

- no hypernuclei yet, but work in progress (N. Kaiser, Paolo Finelli...)
- lattice simulations + χ EFT (Borasoy, Epelbaum, Meißner...)

Weak Decay of Λ Hypernuclei

Weak Baryon-Baryon Interaction

- two-pion exchange
- two-nucleon induced decays $\Lambda NN \rightarrow NNN$
- meson vs. direct quark process
- ${}^{6}_{\Lambda\Lambda}He: \Lambda\Lambda \to \Lambda n \to access to weak \Lambda\Lambda K vertex$
 - A. Parreno, A. Ramos and C. Bennhold, Phys. Rev C 65, 015205 : 3.6%
 - K. Sasaki, T. Inoue, and M. Oka, Nucl.Phys. A726 (2003) 349-355: 0.2%
 - K. Itonaga, T. Ueda, and T. Motoba, Nucl. Phys. A691 (2001) 197c: 2.5%

High statistics is a key issue

Magnetic moment of Λ in nuclei

- baryons do not "melt" in nuclei: quark effects are small
- EMC-effect: whether there is any change in nucleon properties in nuclei remains controversial
 - if mass and size of a baryons changes inside nuclei, also it's magnetic moment might change
 - if so, why? meson current, $\Lambda \Sigma$ mixing, partial deconfinement...?

Magnetic moment of Λ in nuclei

- baryons do not "melt" in nuclei: quark effects are small
- EMC-effect: whether there is any change in nucleon properties in nuclei remains controversial
 - if mass and size of a baryons changes inside nuclei, also it's magnetic moment might change
 - if so, why? meson current, $\Lambda \Sigma$ mixing, partial deconfinement...?
- experimental approach
 - the traditional approach: B(M1) (KEK-PS E518)

$$B(M1) \propto \left| \left\langle \Psi_{low} \right| \mu \left| \Psi_{up} \right\rangle \right|^2 = \left| \left\langle \Psi_{\Lambda \downarrow} \Psi_C \right| \mu \left| \Psi_{\Lambda \uparrow} \Psi_C \right\rangle \right|^2 \propto (g_{\Lambda} - g_C)^2$$

$$\mu = g_C J_C + g_\Lambda J_\Lambda = g_C J + (g_\Lambda - g_C) J_\Lambda$$

Hypernuclei – Present Situation

Birth, Life and Death of a Hypernucleus

Relativistic Hypernuclei

- Production of hypernuclei in relativistic heavy ion collisions
 - production of many hyperons
 - multiple coalescence of hyperons with fragments
 - (π, K) , (K, π) and (K^-, K^+) reactions on fragments

Relativistic Hypernuclei

- Production of hypernuclei in relativistic heavy ion collisions
 - production of many hyperons
 - multiple coalescence of hyperons with fragments
 - (π, K) , (K, π) and (K^-, K^+) reactions on fragments
- Many predictions based on coalescence model
 - M. Sano, INS-PT-31 (1982)
 - M. Wakai, H. Bando and M. Sano, PRC 38, 748 (1988)
 - J. Aichelin and K. Werner, PLB 274, 260 (1992)
 - S. Hirenzaka, T. Suzuki and I. Tanihata, PRC 48, 2403 (1993)
 - M. Sano and M. Wakai, PTP Suppl. 117, 99 (1994)
- Cross sections

Relativistic Hypernuclei

- GUTENBERG MANVERSITÄT
- Production of hypernuclei in relativistic heavy ion collisions
 - production of many hyperons
 - multiple coalescence of hyperons with fragments
 - (π, K) , (K, π) and (K^-, K^+) reactions on fragments
- Many predictions based on coalescence model
 - M. Sano, INS-PT-31 (1982)
 - M. Wakai, H. Bando and M. Sano, PRC 38, 748 (1988)
 - J. Aichelin and K. Werner, PLB 274, 260 (1992)
 - S. Hirenzaka, T. Suzuki and I. Tanihata, PRC 48, 2403 (1993)
 - M. Sano and M. Wakai, PTP Suppl. 117, 99 (1994)
- Cross sections
 - Iocal maximum at ~4AGeV
 - ► single Λ -hypernuclei ~0.1µb
 - ΛΛ-hypernuclei ~0.01 nb
- Exotic beams at high energy offer unique chance at GSI-FAIR to produce hypernuclei with extreme isospin

Hypernuclei in Multifragmentation

- relative yields reflect properties of mass formulae of hypernuclei
- N/Z of projectile influences charge distribution of primary fragments

The HYPHI Project T. Saito

The HYPHI Project T. Saito

- 2004 HypHI project started LOI and progress report to the GSI PAC, Design study 2005 Design study, preparation for the 2006 phase 0 experiment 2007 Phase 0: experiment with ${}^{3}_{A}H$, ${}^{4}_{A}H$ and ⁵, He 2008 ⊳ Design study for the setup for hypernuclear non-mesonic weak 2009 decay measurements Phase 1: Experiments for proton rich hypernuclei 2010 ~2011 Phase2: Experiment for neutron rich hypernuclei at NuSTAR/FAIR
- Phase 3: Hypernuclear separator
 - Hypernuclear magnetic moments
 - Hypernuclear driplines

Production of $\Lambda\Lambda$ -Hypernuclei

- \blacktriangleright simultaneous implantation of two Λ is not feasible
- ► reaction with lowest Q-value: $\Xi^{-}p \rightarrow \Lambda\Lambda$: 28MeV
 - \blacktriangleright large probability that two $\Lambda 's$ stick to same nucleus
- in most cases two-step process
 - production of Ξ^- in primary nucleus
 - slowing down and capture in a secondary target nucleus
- spectroscopic studies only possible via the decay products
- Production of slow Ξ^- by
 - strangeness exchange reaction p(K⁻,K⁺)Ξ⁻
 - ▷ KEK (E176,E373), AGS (E906)
 - emulsion technique
 - antiproton capture and annihilation
 FLAIR
 - direct implantation with energetic antiprotons
 - production with antiprotons and subsequent stopping and capture
 PANDA

Production of Ξ^- at PANDA

- idea: make use of all $(1-10^{-4} \approx 1)$ emitted Ξ^{-1}
- ► significant fraction of produced high momentum Ξ⁻ are degraded by elastic scattering in the primary nucleus to p ~ 200-500MeV/c

Facility	reaction	stopped Ξ ⁻ /day
J-PARC	(K ⁻,K +)Ξ⁻	1000 (35000?)
FLAIR	$pp_{stopped} \rightarrow K^*K^*$	2000
PANDA	pp→Ξ ⁻ Ξ ⁺	50000

- capture of Ξ^- in secondary solid state target (short stopping time)
- secondary target only moderately excited (20-30MeV)
- antiproton momentum 3GeV/c
 - ► maximum Ξ production
 - Iow number of associated particles
 - particle background forward focused
- γ-ray detection at backward angles

Decay of excited $\Lambda\Lambda$ hypernuclei

- conversion of $\Xi p \rightarrow \Lambda \Lambda$ produces excited primary nucleus
 - ▶ Q-value, Ξ-binding energy
- SMM model calculations (A. Sanchez, A. Botvina, J.P.)
 - significant fraction of ΛΛ-hypernuclei in excited state

Decay of excited $\Lambda\Lambda$ hypernuclei

- ► conversion of $\Xi p \rightarrow \Lambda \Lambda$ produces excited primary nucleus
 - ▶ Q-value, Ξ-binding energy
- SMM model calculations (A. Sanchez, A. Botvina, J.P.)
 - significant fraction of ΛΛ-hypernuclei in excited state
- Various secondary target nuclei ⁷Li, ⁹Be, ¹⁰B, ¹¹B, ¹²C, ¹³C
 - individual transitions with 10% probability
 - comparison of targets allows assignment to specific nucleus

PANDA Setup

GUTENBERG MAINZENSTÄT

- ► θ_{lab} < 45°: Ξ -bar, K trigger (PANDA)
- ► θ_{lab} = 45°-90°: Ξ-capture, hypernucleus formation
- $\theta_{lab} > 90^{\circ}$: γ -detection Euroball at backward angles
 - neutron background (4000n cm⁻²s⁻¹)

Challenges for Ge Detectors

- Magnetic field ~ 1.2 T:
 - Change in the energy resolution and in the pulse shape

A. Sanchez et al., NIM A (in press)

- hadronic background and neutron damage
 - detector at backward angles
- Limited Space
 - need compact design of cooling system.

International Hypernuclear Network

- Hypernuclei represent a bridge between traditional nuclear physics and hadron physics
- FAIR offers several unique opportunities to explore hypernuclei in hitherto unexplored regimes
 - HypHI: exotic hypernuclei
 - FLAIR, PANDA: double hypernuclei
- ► These studies will possible by a unique combination of experimental facilities at FAIR, e.g. Ge detectors ⊕ PANDA ⊕ antiproton beams