

Outline of the talk

- interaction with strangeness
 - the hyperon-nucleon interaction
- hypernuclear formation in electroproduction
 the KAOS spectrometer at the accelerator MAMI-C
- hypernuclear spectroscopy with stable heavy ion beams and rare isotope beams
 the Hyper experiment at CSI/EAIR
 - the HypHI experiment at GSI/FAIR
- hypernuclear physics with anti-protons
 - the Panda experiment at FAIR
- summary of present activities

The hyperon-nucleon interaction

- hypernuclei: nuclei with strange quarks
 - nuclear bound system with hyperon (Y)
 - a "laboratory" to study baryon-baryon interactions with strange quarks

[Fujiwara et al., nucl-th/0607013]

The hypernuclear landscape

Spectroscopy of single A-hypernuclei

Observed γ -transitions in single Λ -hypernuclei

many excited, particle stable states in single hypernuclei observed γ -spectroscopy of these states is used to study effective ΛN potential

$$V_{\Lambda N}^{eff} = V_0 + \Delta(\vec{s}_{\Lambda} \cdot \vec{s}_N) + S_N(\vec{l}_{\Lambda N} \cdot \vec{s}_N) + S_\Lambda(\vec{l}_{\Lambda N} \cdot \vec{s}_{\Lambda}) + T(s_{12})$$

Physics of Hypernuclei as seen by an experimenter

Hyperon-hyperon interaction

Spectroscopy of AA-hypernuclei

[E. Hiyama, M. Kamimura, T. Motoba, T. Yamada and Y. Yamamoto, Phys. Rev. 66 (2002), 024007] 4-body cluster model for light nuclei:

many excited, particle stable states in double hypernuclei predicted γ -spectroscopy of these states is mandatory to study $\Lambda\Lambda$ interaction

ΛΛ-nuclei as gateway to H-particles

H-particle predicted as $\Lambda\Lambda$ bound state

Physics of Hypernuclei as seen by an experimenter

International hypernuclear network

PANDA

anti-proton beam
double Λ-hypernuclei
γ-ray spectroscopy

KAOS

electro-production
single Λ-hypernuclei
Λ-wavefunction

Jefferson Lab

- electro-production
- single Λ -hypernuclei
- Λ -wavefunction

Dubna

heavy ion beam
single Λ-hypernuclei
weak decays

HypHI @ GSI

- heavy ion beams
- single Λ -hypernuclei
- at extreme isospins
- magnetic moments

FINUDA

- e⁺e⁻ collider
- stopped-K reaction
- single Λ -hypernuclei
- γ-ray spectroscopy

J-PARC

intense K- beam

- single and double Λ -hypernuclei
- γ -ray spectroscopy for single Λ

exchange of strangeness

production of open strangeness

Strangeness electroproduction

electroproduction of hypernuclei

- neutron-richer single Λ hypernuclei
- $-\Lambda$ wave-function inside hypernucleus
- large momentum transfer components

Physics of Hypernuclei as seen by an experimenter

stle

He

3 14

tHe

3H

Be

He

He

44

Be

He

hol

Kinematic differences to meson induced reactions

• typical momentum transfers: $pprox 300 - 600 \, {\rm MeV/c}$

 $Q^{2} = -q_{\mu}q^{\mu} = \omega^{2} - \vec{q}^{2}$

- minimum momentum transfer for $\theta_K = 0^\circ$
- energy and momentum transfer independent:
- 1000 600 recoil momentum (MeV/c) recoil momentum (MeV/c) 0° 500 800 10° 20° 400 600 300 400 200 ٥° 10° 200 100 20° 500 1000 2000 1200 1600 1500 1000 1400 1800 2000 0 beam momentum (MeV/c) beam momentum (MeV/c)

[strangeness electroproduction $(e,e^\prime K^+)$]

- momentum transfer $\rightarrow 0$ for "magic momentum"
- minimum momentum transfer for $\theta_{\pi}=0^{\circ}$
- momentum distributions cannot be measured

[strangeness exchange (K^-, π^-)]

hypernuclei: spectrometry of mesons at forward angles

Extracting hypernuclear structure information

- cross sections calculated with harmonic oscillator potential and DWIA
- typical K^+ angular distributions peaked at 0°, falling rapidly:

[M. Sotona and S. Furullani, Prog. Theor. Phys. Suppl. 117, 151 (1994)]

»machines machines machines machines« »machines machines machines machines«

»It's a machines world«

Queen, April 1984

The »three« spectrometer facility at MAMI

Physics of Hypernuclei as seen by an experimenter

Transport of KAOS to Mainz in June 2003

Physics of Hypernuclei as seen by an experimenter

Kinematical optimisation of the formation rate

$$\mathrm{FOM} = S_\Lambda \times \Gamma \quad \text{with} \quad \Gamma = \frac{\alpha}{2\pi^2} \frac{E'}{E} \frac{k_\gamma}{Q^2} \frac{1}{1-\epsilon}$$

 $[Q^2 = 0.01 \,\text{GeV}^2/c^2, W = 11.995 \,\text{GeV}, E = 1.50 \,\text{GeV}, E' = 0.650 \,\text{GeV}, \theta_e = 5.8^\circ, p_K = 0.446 \,\text{GeV}/c, p_Y = 0.423 \,\text{GeV}/c, and \theta_K = 5.5^\circ]$

Physics of Hypernuclei as seen by an experimenter

Hadron arm completed in Feb 2008

Timeline

2008-9: data taking for kaon production
2010: completion of KAOS as double spectrometer at 0°
2010/11: data taking for hypernuclei production

Challenges and prospects

special features of electro-production at MAMI-C (and JeffersonLab)

- better resolution compared to (π^+, K^+) or (K^-, π^-)
- access to new isotopes of hypernuclei (converting p into Λ)
- measurements at different kaon angles map out different parts of the Λ momentum distribution
- <u>unique with KAOS</u>: double spectroscopy in a single spectrometer

Networking Activity SPHERE (EU FP7 HadronPhysics2)

Physics of Hypernuclei as seen by an experimenter

HypHI @ GSI/FAIR

"He

He

He

oH

Production of hypernuclei in heavy ion collisions – production of many hyperons

- multiple coalescence of hyperons with fragments
- $-(\pi,K)$, (K, π) and (K⁻,K⁺) reactions on fragments

Physics of Hypernuclei as seen by an experimenter

arte

te

3H

n

1

He

He

44

HypHI @ GSI/FAIR

At freeze-out : thermal and chemical equilibrium

Production of hypernuclei in relativistic heavy ion collisions

-production of many hyperons

-multiple coalescence of hyperons with fragments $-(\pi,K)$, (K, π) and (K⁻,K⁺) reactions on fragments

Concept of the HypHI experiment

Produced hypernucleus at similar velocity as projectiles large Lorentz factor: γ > 3: life-time 200 ps → ~600 ps hypernuclear decay in flight

Example : ${}^{12}C + {}^{12}C \rightarrow {}^{A}_{\Lambda}Z + K^{+,0} + X$

Physics of Hypernuclei as seen by an experimenter

Scintillating fibre detectors

- fibre diameter: 0.83 mm
- HAMAMATSU H7260KS
- X and Y tracking with resolution of ~ 0.5 mm
- discriminator cards (1400 ch) from Kaos
- energy readout by CAEN QDC for TR0
- time readout by VUPROM 2

HypHI phases

2008

2009

2010

2011

2012

Design study, preparation for the phase 0 experiment

Phase 0: experiment with ${}^{3}_{\Lambda}H$, ${}^{4}_{\Lambda}$ H and ${}^{5}_{\Lambda}$ He

Phase 1: Experiments with proton rich hypernuclei Phase 2: Experiment with neutron rich hypernuclei at NuSTAR/FAIR

Phase 3: Hypernuclear separator

- hypernuclear magnetic moments
- hypernuclear driplines

Physics of Hypernuclei as seen by an experimenter

PANDA @ FAIR

anti-proton beam induced hypernuclei production:

- high resolution γ -spectroscopy of double $\Lambda\Lambda$ hypernuclei
- weak decays

Physics of Hypernuclei as seen by an experimenter

General Idea

Use pp Interaction to produce a hyperons which are tagged by the anti-hyperon or its decay products

Double hypernuclei with kaons

 $p(K^{-}) \approx 1.8 (1.66) \text{ GeV}/c \rightarrow p(K^{+}) \approx 1.39 (1.24) \text{ GeV}/c \text{ (forward)}$

 $K^- + {}^{A}Z \rightarrow through \pi^0 + {}^{A}_{\wedge}(Z-1) \rightarrow K^+ + {}^{A}_{\wedge\wedge}(Z-2)$

 $\sigma(\theta) \approx 10 \text{ nb/sr (May)}$ $p(K^{-}) \approx 1.8(1.66) \text{ GeV/} c \rightarrow p(K^{+}) \approx 1.42 (1.28) \text{ GeV/} c \text{ (forward)}$

Double hypernuclei with antiprotons

Indirect reaction:

 \overline{p} (3 GeV/c) + N $\rightarrow \overline{\Xi}$ + Ξ^{-}

(PANDA)

Two-step process in one nucleus:

 $\overline{p}(low p) + N \rightarrow K^* + \overline{K}^*$

 $K^* + N' \rightarrow \overline{K} + \Xi^- (\approx at rest)$

(FLAIR)

Recoilless production:

 \overline{p} (>15 GeV/c) + N $\rightarrow \overline{\Xi}$ + Ξ^{-}

Formation of double hypernuclei from Xi hyperons

2. hyperatom + atomic decay

- 3. capture in nucleus ($^{A'}_{\Xi} Z'$)
- 4. conversion: $\Xi^- + p \rightarrow \Lambda\Lambda + 28 MeV$
- 5. double hypernucleus ($^{A'}_{\Lambda\Lambda}Z'$)

Production mechanism at FLAIR

[original idea K. Kilian 1987]

GSI and FAIR facilities

GSI, Darmstadt

- heavy ion physics
- nuclear structure
- atomic and plasma physics
- cancer therapy

FAIR: New facility

PANDA

- heavy ion physics
- higher intensities & energies
- antiproton physics

FAIR facilities

High Energy Storage Ring

HESR Performance Racetrack shaped ring: 574 m length Luminosity/Intensity:

- Pbar production rate: 2x10⁷ /s
- High luminosity mode: $L = 2 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$
- High resolution mode: L = 2x10³¹ cm⁻²s⁻¹ (for target thickness 4x10¹⁵ atoms/cm²)
 Momentum range:
- 1.5 15 GeV/c (0.831- 14.1 GeV)
- Revolution frequency: 5x10⁵ Hz Momentum resolution:
- High luminosity mode: △p/p=10⁻⁴ (stochastic cooling above 3.8 GeV/c)
- High resolution mode: △p/p=10⁻⁵ (electron cooling)

Beam cooling in HESR

Physics of Hypernuclei as seen by an experimenter

Sept 2008 P Achenbach, U Mainz

6 a n)d a

Production mechanism at PANDA

Detection and triggering

Physics of Hypernuclei as seen by an experimenter

Recoil momentum in hyperon production

Physics of Hypernuclei as seen by an experimenter

Sept 2008

P Achenbach, U Mainz

Application to target design

Physics of Hypernuclei as seen by an experimenter

Hypernuclear set-up at PANDA

- θ_{lab} < 45°: Ξ -bar, K trigger and PID in PANDA spectrometer
 - θ_{lab} = 45°-90°: Ξ -capture and hypernuclei formation
 - θ_{lab} >90°: γ -detection with HPGe at backward angles

The PANDA PID detectors

TOF for low momentum kaons

- Scintillating fibers (START)
- ~2000 fibers placed in two rings \oplus readout with SiPM
- ► TOF barrel (STOP)
- time resolution ~ 80 ps with 16 slabs

[simulations by A. Sanchez, U Mainz]

Physics of Hypernuclei as seen by an experimenter

Comparison of experiments

experiment	reaction	device	beam/ target	status
BNL-AGS E885	$(\Xi^{-},^{12}C) \rightarrow {}^{12}B + n \Lambda \Lambda$	neutron detector arrays	K ⁻ beam, diamond target	20,000 stopped Ξ ⁻
BNL-AGS E906	2π decays	cylindrical detector system	K⁻ beam	few tens 2π decays of ${}^4_{\Lambda\Lambda}H$
KEK-PS E373	(K⁻,K⁺)Ξ	emulsion	(K⁻,K⁺)	several hundred stopped Ξ ⁻
facility	reaction	device	beam/ target	captured
JHF	(K⁻,K+)Ξ	spectrometer, $\Delta\Omega = 30 \text{ msr}$	8·10 ⁶ /sec 5 cm ¹² C	< 7,000 expected
cold anti- protons	$p \bar{p} \rightarrow K^* \bar{K}^*$ $\bar{K}^* N \rightarrow \Xi K$	vertex detector	10 ⁶ stopped p per sec	2,000 expected
PANDA	p p → Ξ Ξ	vertex detector + γ–array	L=2.10 ³² , thin target, production & decay target	3,000 "golden events" expected ~ 300,000 KK trigger expected

Physics of Hypernuclei as seen by an experimenter

Sept 2008

P Achenbach, U Mainz

"Golden events":

\Rightarrow	700 Hz
	p ₅₀₀ ≈ 0.0005
	0.5
	p _{CAP} ≈ 0.20
\Rightarrow	3000 / day
	\Rightarrow

gamma emission/event, γ-ray peak efficiency p_γ ≈ 0.5 p_{GE}≈ 0.1

~ 7/day "golden" γ -ray events with Ξ ⁺ trigger ~ 700/day with *KK* trigger

Summary

Hypernuclei offer a bridge between traditional nuclear and hadron physics to explore fundamental questions:

- how do nucleons and nuclei form out of quarks?
- can nuclear structure be derived *quantitatively* from QCD?
- what are the properties of strange baryons in nuclei?

