Detector Developments for the hypernuclear programme at PANDA

Patrick Achenbach U Mainz

Oct. 2008

The hypernuclear landscape

Detector developments for the hypernuclear programme at PANDA

Oct 2008 P Achenbach, U Mainz

Hyperon-hyperon interaction

[Takahashi et al.]

$$B_{\Lambda\Lambda}({}^{A}_{\Lambda\Lambda}Z) = B_{\Lambda}({}^{A}_{\Lambda\Lambda}Z) + B_{\Lambda}({}^{A-1}_{\Lambda}Z)$$
$$\Delta B_{\Lambda\Lambda}({}^{A}_{\Lambda\Lambda}Z) = B_{\Lambda}({}^{A}_{\Lambda\Lambda}Z) - B_{\Lambda}({}^{A-1}_{\Lambda}Z)$$

The Danysz event: a classical example

VOLUME 11, NUMBER 1

PHYSICAL REVIEW LETTERS

1 JULY 1963

OBSERVATION OF A DOUBLE HYPERFRAGMENT

M. Danysz, K. Garbowska, J. Pniewski, T. Pniewski, and J. Zakrzewski

FIG. 1. A photomicrograph and a schematic drawing of the production of a Ξ^- hyperon in a 1.5-GeV/c K⁻-meson interaction at A followed by capture at rest of the Ξ^- hyperon at B with the emission of a double hyperfragment decaying in cascade at C and D.

International hypernuclear network

PANDA

anti-proton beam
double Λ-hypernuclei
γ-ray spectroscopy

KAOS

electro-production
single Λ-hypernuclei
Λ-wavefunction

JeffersonLab

• electro-production

• single Λ -hypernuclei

• Λ -wavefunction

Dubna

heavy ion beam
single Λ-hypernuclei
weak decays

HypHI @ GSI

- heavy ion beams
- single Λ-hypernuclei
- at extreme isospins
- magnetic moments

FINUDA

- e+e- collider
- stopped-K- reaction
- single Λ -hypernuclei
- γ-ray spectroscopy

J-PARC

• intense K- beam

- single and double Λ -hypernuclei
- γ -ray spectroscopy for single Λ

High Energy Storage Ring at FAIR

HESR Performance

Racetrack shaped ring: 574 m length Luminosity/Intensity:

- Pbar production rate: 2x10⁷ /s
- High luminosity mode: $L = 2 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$
- High resolution mode:

```
L = 2x10^{31} \text{ cm}^{-2}\text{s}^{-1}
(for target thickness
4x10^{15} atoms/cm<sup>2</sup>)
```

Momentum range:

- 1.5 15 GeV/c (0.831- 14.1 GeV)
- Revolution frequency: 5x10⁵ Hz Momentum resolution:
- High luminosity mode: △p/p=10⁻⁴ (stochastic cooling above 3.8 GeV/c)
- High resolution mode: $\Delta p/p=10^{-5}$ (electron cooling)

Formation of double hyper-nuclei from Xi hyperons

Detection and triggering of hypernuclear events

Detector developments for the hypernuclear programme at PANDA

Hypernuclear set-up at PANDA

- θ_{lab} < 45°: Ξ -bar, K trigger and PID in PANDA spectrometer
 - θ_{lab} = 45°-90°: Ξ -capture and hypernuclei formation
 - θ_{lab} >90°: γ -detection with HPGe at backward angles

Detector developments for the hypernuclear programme at PANDA

boron

carbon

low secondary masses (Li,Be,B,C) in four separated sections:

 identification can rely on existing information on single hypernuclei

low g-ray absorption

no x-ray background

Stopping of Xi-hyperons

Figure 4.75: Layout out the secondary sandwich target used in the present simulations. The lower part marks the stopping points of the Ξ^- hyperons within the target in the x-y plane transverse to the beam di-

[J. Pochodzalla et al., PANDA Physics Book, to be published. Simulations by A. Sanchez, U Mainz.]

Figure 4.76: Transverse vs. longitudinal momentum distribution of Ξ^- with transverse and longitudinal momenta less than 500 MeV/c (upper part) and those stopped within the secondary target (lower part).

HPGe detectors in a mixed radiation background

Figure 4.81: Distribution of produced particles from background reactions. The Germanium detectors will be affected mainly by particles emitted at backward axial angle.

[J. Pochodzalla et al., PANDA Physics Book, to be published. Simulations by A. Sanchez, U Mainz.]

Figure 4.82: Incident kinetic energy of protons and neutrons entering the Germanium detector surface. The main contribution to a possible radiation damage of the detector is provided by neutrons.

HPGe detectors in magnetic fields

Detector developments for the hypernuclear programme at PANDA

Oct 2008 P Achenbach, U Mainz

Identification strategy using decay pion correlations

[J. Pochodzalla et al., PANDA Physics Book, to be published. Simulations by A. Sanchez, U Mainz.] Figure 4.80: Upper part: Momentum correlation of all negative pion candidates resulting from the decay of double hypernuclei in a secondary ¹²C target. Lower part: γ -spectrum detected in the Ge-array by cutting on the two π -meson momenta.

Detector developments for the hypernuclear programme at PANDA

Strangeness tagging using low momentum kaons

SciF(450 ps)+TOF(80 ps) mass reconstruction

- Scintillating (possibly crystalline) fibers (START)
- ~2000 fibers placed in two rings \oplus readout with SiPM
- ► TOF barrel (STOP)
- time resolution ~ 80 ps with 16 slabs

[simulations by A. Sanchez, U Mainz]

Detector developments for the hypernuclear programme at PANDA

Oct 2008 P Achenbach, U Mainz

Estimated count rates

"Golden events":

1000000000000000000000000000000000000		
$\Xi^+\Xi^-$ cross section 2mb for pp	\Rightarrow	700 Hz
p(100-500 MeV/c)	ł	o ₅₀₀ ≈ 0.0005
Ξ^+ reconstruction probability	(0.5
stopping and capture probability	k	o _{CAP} ≈ 0.20
total captured Ξ^{-}	\Rightarrow 3	3000 / day
Ξ^+ reconstruction probability stopping and capture probability total captured Ξ^-	\Rightarrow).5 ⊃ _{CAP} ≈ 0.2 3000 / da

gamma emission/event, γ-ray peak efficiency p_γ ≈ 0.5 p_{GE}≈ 0.1

~ 7/day "golden" γ -ray events with Ξ ⁺ trigger ~ 700/day with *KK* trigger