How it began

ZAKOPANE CONFERENCE ON NUCLEAR PHYSICS

Extremes of the Nuclear Landscape

Hypernuclei - the next decade Josef Pochodzalla

Why are hypernuclei interesting?
Why different experiments ?
What will come in the next decade ?..

Bundesministeriur für Bildung und Forschung

Study of Strongly Interacting Matter

Hypernuclear physics is in a strange position. It is neither fish nor fowl. High-energy physicists do not look to it for valuable advances in their understanding of the interactions of fundamental particles. Nuclear physicists also see the field as something apart. Its main relevance for the fundamentals is the information it can provide on $N-\Lambda$ and $\Lambda-\Lambda$ interactions. J. D. JACKSON

Lawrence Radiation Laboratory, Berkeley, California

Science, Vol. 159, p. 1346

5 decades of hyperons in neutron stars

NEUTRON STAR MODELS

A. G. W. CAMERON Atomic Energy of Canada Limited, Chalk River, Ontario, Canada Received June 17, 1959

Another reason why the writer has not taken into account complications inherent in using a relativistic equation of state is that no such things as pure neutron stars can be expected to exist. The neutrons must always be contaminated with some protons and sometimes with other kinds of nucleons (hyperons or heavy mesons).

Alastair G.W. Cameron, Astrophysical Journal, vol. 130, p.884 (1959)

Baryon stars

- **b** beyond $2\rho_0$ hyperons may play a significant role in neutron stars
- in the core hyperons may even be more abundant than neutrons
 Wambach 2008: "...it becomes practically impossible to ignore strangeness when considering neutron stars"
- needed: full BB interaction at high density = at small distances

Y-Y Interaction in neutron stars

MI Ai-Jun and YOU Wie, Commun. Theor. Phys. (Beijing, China) 53 (2010) pp. 133–137

Table 1 The properties of neutron star calculated with various hyperon-hyperon (Y-Y) interaction and the case without hyperon-hyperon interaction (no Y-Y). See text for detail.

	Y-Y strength	$M_{\rm max}/M_{\odot}$	$\rho_c/{\rm fm}^{-3}$	$\operatorname{Radius}/\operatorname{km}$	_
	0.1	1.75	1.03	11.70	
Quark	0.5	1.64	0.88	12.46	
model	0.7	1.52	0.68	13.47	
	no Y-Y	1.62	0.84	12.65	_
	0.1	2.06	1.01	11.41	
Universal	1.0	2.01	1.06	11.21	
coupling	1.4	1.95	1.19	10.58	
	no Y-Y	1.96	1.06	11.28	

Strategy

 \rightarrow see talk of James Vary: ab initio calculations...

Strategy

...but there is still a long way to go

Nuclear Forces from Lattice QCD

Hypernuclear physics: a multicultural activity

nuclear reaction

Hypernuclei offer a bridge between traditional nuclear physics , hadron physics and astrophysics

nuclear

- It helps to explore fundamental questions like
 - How do nucleons and nuclei form out of quarks?
 - Can nuclear structure be derived quantitatively from QCD?
 - Properties of strange baryons in nuclei and structure of QCD vacuum?
 - ► Baryon-baryon weak interaction $\Lambda N \rightarrow NN$, $\Lambda \Lambda \rightarrow \Lambda N$
 - H-dibaryon {uuddss} in nuclei ?
 - Can we constrain the interior of neutron stars?

astrophysics

Why different experiments ?

International Hypernuclear Network

Birth, life and death of a hypernucleur

Single Hypernuclei - Two-body Reactions

	18													$^{32}_{\wedge} \text{Ar}$	$^{33}_{\wedge} \text{Ar}$	$^{34}_{\wedge} \text{Ar}$	$^{35}_{\wedge} \text{Ar}$	36 ^ Ar	$^{37}_{\wedge} \text{Ar}$	³⁸ ∧ Ar	³⁹ ∧ Ar	⁴⁰ ∧ Ar	$^{41}_{\wedge} \text{Ar}$	$^{42}_{\wedge} {\rm Ar}$	$^{43}_{\wedge} \text{Ar}$	⁴⁴ ∧ Ar	$^{45}_{\wedge} \text{Ar}$	⁴⁶ ∧ Ar	$^{47}_{\wedge} \text{Ar}$	⁴⁸ ∧Ar	⁴⁹ ∧Ar
ĺ	17														³² ∧CI	³³ CI	³⁴ CI	³⁵ ∧CI	³⁶ ∧CI	37 ^ CI	³⁸ CI	³⁹ ∧CI	⁴⁰ CI	⁴¹ ∧CI	$^{42}_{\wedge}\text{Cl}$	⁴³ ∧CI	$^{44}_{\wedge}\text{Cl}$	⁴⁵ ∧CI	$^{46}_{\Lambda}\text{Cl}$	^47 CI	^48 CI
	16											^28 ^	²⁹ ∧S	³0 S ∧	³¹ ∧	³² ∧S	³³ ∧S	³⁴ S	³⁵ ∧S	³⁶ S	^37 S	38 ^S	³⁹ ∧S	⁴⁰ ∧S	^41 ∧	⁴² ∧S	^43 ∧ S	⁴⁴ ∧S	^45 S	^46 ∧ S	^47 S
	15												^28 ^ P	^29 ^P	^30 P	$^{31}_{\Lambda}P$	$^{32}_{\wedge}P$	³³ ∧P	$^{34}_{\Lambda}P$	³⁵ ∧P	$^{36}_{\wedge}P$	$^{37}_{\wedge}P$	^38 P	³⁹ P	^40 P	^41 ∧P	$^{42}_{\wedge}P$	⁴³ ∧P	^44 P	^45 P	$^{46}_{\wedge}P$
	14									²⁴ ∧Si	²⁵ ∧Si	²⁶ ∧Si	²⁷ Si	²⁸ Si	²⁹ Si	³⁰ Si	³¹ Si	³² ∧Si	³³ Si	³⁴ Si	^35 Si	³⁶ Si	^ ³⁷ Si	³⁸ Si	³⁹ Si	⁴⁰ Si	^ ⁴¹ Si	⁴² ∧Si	^43 Si	⁴⁴ Si	^45 Si
	13										²⁴ AI	$^{25}_{\wedge} \text{AI}$	$^{26}_{\wedge} AI$	^27 AI	²⁸ AI	²⁹ AI	³⁰ AI	³¹ ∧AI	³² AI	³³ AI	$^{34}_{\wedge} \text{AI}$	^ ³⁵ AI	^ ³⁶ AI	^ ³⁷ AI	³⁸ AI	³⁹ AI	$^{40}_{\wedge} \text{AI}$	^41 AI	^42 AI	$^{43}_{\wedge} \text{AI}$	$^{44}_{\wedge} \text{AI}$
Der	12							^20 Mg	²¹ Mg	^22Mg	^23 Mg	²⁴ Mg	²⁵ ∧Mg	²⁶ ∧Mg	^27 Mg	²⁸ Mg	²⁹ Mg	³⁰ Mg	³¹ Mg	³² ∧Mg	³³ Mg	³⁴ Mg	^35Mg	³⁶ ∧Mg	³⁷ ∧Mg	³⁸ Mg	³⁹ Mg	^40 Mg	^41 _∧ Mg		
Ĕ	11								²⁰ ∧a	²¹ Na	²² ∧Aa	²³ ∧a	²⁴ ∧a	²⁵ ∧Na	²⁶ ∧Na	²⁷ ∧a	² ⁸ ∧a	²⁰Na ∧	³⁰ Na	³¹ Na	³² Na	³³ Na	³⁴ Na ∧	³⁵ Na ∧	³⁶ Na ∧	³⁷ ∧a	³⁸ ∧a				
Z	10						^17 Ne	¹⁸ Ne	¹⁹ ∧Ne	²⁰ ∧Ne	²¹ Ne	²² ∧Ne	²³ ∧Ne	²⁴ ∧Ne	²⁵ ∧Ne	²⁶ ∧Ne	^27 Ne	²⁸ Ne	²⁹ ∧Ne	³⁰ Ne	³¹ Ne	³² ∧Ne	³³ Ne	^³4Ne	³⁵ ∧Ne						
	9						^16 ∧ F	^17 F	^18 F	¹⁹ F	^20 F	$^{21}_{\Lambda}F$	^22 F	^23 F	^24 F	^25 F	^26 F	^27 F	^28 F	^29 F	^30 F	$^{31}_{\Lambda}\text{F}$	$^{32}_{\Lambda}F$								
otc	8				¹³ O	^14 ^	¹⁵ ΛΟ	¹⁶ O	17 ^O	¹⁸ O	¹⁹ O	²⁰ ∧O	²¹ ∧O	²² 0	^23 ^	²⁴ ∧O	²⁵ ∧O	²⁶ ∧O	^27 ∧							$n \rightarrow$	Λ.	()	Κ - π	-) -	
Pr	7				$^{12}_{\Lambda}N$	¹³ ∧N	¹⁴ ∧N	¹⁵ ∧N	¹⁶ ∧N	¹⁷ ∧N	¹⁸ ∧N	¹⁹ ∧N	^20 N	²¹ ∧N	^22 ^N	²³ ∧N	$^{24}_{\Lambda}N$											()	K-,,,	, π ⁻)-	
	6			^10 C	¹¹ ∧C	¹² ^C	¹³ C	¹⁴ ∧C	¹⁵ ∧C	^ ¹⁶ ∧C	^17 C	^ ¹⁸ ∧C	^19 C	^20 ^C	²¹ ∧C													()	π^+, K^-	+)	
	5			ÅΒ	¹⁰ B	¹¹ AB	¹² ∧B	¹³ ∧B	¹⁴ ∧B	¹⁵ ∧B	¹⁶ ∧B	¹⁷ ∧B	¹⁸ ∧B													$p \rightarrow$	Λ:	(6	e,e'K	(+)	
ļ	4		²∧Be	Å₿e	Å₿e	¹⁰ Be	¹¹ _^ Be	¹² ∧Be	¹³ ∧Be	¹⁴ ∆Be	¹⁵ ∧Be																	(/	$K^{-}_{stop},$	π°)	
	3		۴Li	⁷ Li	ÅLi	⁹ Li	¹⁰ Li	¹¹ Li	¹² Li																	pp -	→ nA	.: ()	π ⁻ ,K	+)	
ļ	2	∱He	⁵ ∧He	δ∧He	⁷ _^ He	ÅHe	°∧He																								
	1	ÅΗ	ÅΗ																												
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30

Neutron Number

Past and Presence of Hypernuclei

High Resolution γ -Spectroscopy at KEK

The present nuclear chart

ABe BRO a Λ hyperon remains a Λ hyperon inside the nucleus

AB

AC

AB

AC

12 R

Be

13 B

¹²Be

Li

14 B

¹³ Be

12 Li

Be

10 Be

Λ potential about 2/3 of nucleon potential

⁶He

⁵H

'He

°H

spin-orbit interaction very small

He

• Λ - Σ mixing important ⁵He

ĨĤ

Present limitations

⁴H

• only single Λ -hypernuclei close to valley of stability

⁹He ¹⁰He

10

16 N

14 C

Ar

Si

21 F

20 0

IP N

18 C

17 B

HYP2006

H. Merkel

only very few $\Lambda\Lambda$ -hypernuclei *events*

°Li

⁸He

- Information on Ξ hypernuclei limited
- no information on antihyperons in normal nuclei

What will come in the next decade?

International Hypernuclear Network

J-PARC beyond 2010

Beam

Dump

Electroproduction of Hypernuclei

J-Lab Experiments

A Binding Energy in Mirror Hypernucle

• If isospin is an exact symmetry and therefore also no ΛN charge symmetry breaking $\Rightarrow B_{\Lambda}$ of mirror nuclei identical

${}^{4}_{\Lambda}H$	2.04 ± 0.04	${}^{4}_{\Lambda}He$	2.39 ± 0.03
$^{6}_{\Lambda}$ He	4.18 ± 0.10	$^{6}_{\Lambda}Li$	3.92 ± 0.37
	4.42 ± 0.13		
$^{7}_{\Lambda}$ He	$\textbf{3.69} \pm \textbf{0.90}$	$^{7}_{\Lambda}$ Be	$\textbf{5.16} \pm \textbf{0.08}$
⁸ <i>Li</i>	6.80 ± 0.03	$^{8}_{\Lambda}$ Be	6.84 ± 0.05
⁹ <i>Li</i>	8.53 ± 0.15	$^{9}_{\Lambda} B$	7.88 ± 0.15
$^{10}_{\Lambda}$ Be	9.11±0.22	$^{10}_{\Lambda} B$	8.89 ± 0.12
$^{12}_{\Lambda} B$	11.37 ± 0.06	$^{12}_{\Lambda} C$	10.76 ± 0.19
			11.38 ± 0.09
$^{16}_{\Lambda}$ N	13.76 ± 0.16	¹⁶ Ο	12.42 ± 0.05
			13.28 ± 0.36
d by			13.40 ± 0.40
lectromac	gnetic effects		

- nuclear CSB
- AN CSB

KAOS @ MAMI

The present nuclear chart

He

 $\sqrt[3]{H}$

Ar

11AB 20 CI CI 10 Be 20 5 27 P Si N 18 0 Si He AN AI 16 N 1º N 12 C Mg AC 14 C 10 B Na AB 'Be 12 B Ne ²⁰Ne Be *Be ABe. 15 O 21 F ^eLi 0 He Li 19 O 10 Li He 20 0 He 16 N He 17 N He 18 N AH 19 N 4 C 15 C AH ¹⁶ C 17 C 12 B 18 C ¹³B 14 B 15 B ¹⁶ B Be Be 17 B 12 Be ¹³ Be 14 Be °Li ⁵He Li ⁶He 12 Li Li 'He ⁸He ⁹He ¹⁰He ³Н HYP2006 ⁴H 5H 6H n H. Merkel Present limitations in.

- only single Λ -hypernuclei close to valley of stability
- only very few ΛΛ-hypernuclei events
- ► Information on Ξ hypernuclei limited
- no information on antihyperons in normal nuclei

International Hypernuclear Network

- background shape determined from rotated background analysis
- Signal observed from the data (bin-by-bin counting): 177 \pm 30
- ▶ Mass: 2.990 ± 0.001 GeV; Width (fixed): 0.0025 GeV.

The first antihypernucleus: ${}^{3}_{\overline{\Lambda}}\overline{H}$ @ STARMAN

- ▶ Signal observed from the data (bin-by-bin counting): 68±18
- Mass: 2.991±0.001 GeV; Width (fixed): 0.0025 GeV

International Hypernuclear Network

HYPHI @ GSI/FAIR

3.) - C (2)

‡Не

211

m

Λ.

21-10

He

44

- neutron and proton rich single Λ hypernuclei
- weak decays, lifetimes

9140

He

He

"He

344

- hypermatter at low density
- magnetic moment of Λ inside nucleus

Take Saito (GSI, Mainz)

Phase 0 experiment at GSI, in 2009/2010

The present nuclear chart

He

H

AHe

"He

"Be

Be

He

⁵He

⁴H

N

n

 ${}_{7}^{3}H$

He

S

Present limitations

• only single Λ -hypernuclei close to valley of stability

Ar

CI

20 S

SI

AI

Mo

20 0

19 N

18 C

17 B

HYP2006

H. Merkel

CI

Mg

0

IB N

17 C

¹⁶ B

Si

0

Ne

N

¹⁶ C

15 B

14 Be

Ne

15 C

14 B

¹³ Be

12 Li

¹³B

¹²Be

Li

11

⁹He ¹⁰He

100

16 N

14 C

15 0

12 B

"Be

only very few ΛΛ-hypernuclei events

11 B

AC

AB

ABe.

Li

He

'He

°H

AC

12 B

10 Li

°Be

⁹Li

⁸He

10 Be

Be

"Li

He

⁶He

5H

- ► Information on Ξ hypernuclei limited
- no information on antihyperons in normal nuclei

Summary and perspective (1)														
р Л Ву	P A By checking consistency of ΔB_{AA} (NAGARA) within 3 STD. e													
	AZ c	Ξ ⁻ aptured	<i>В₄₄ - В</i> ≘− [MeV]	∆ <i>В₄₄ - В</i> ≘- [MeV]	Assumed level	Влл [MeV]	∆ В лл [MeV]							
NAGARA	<u>∧∱</u> He	¹² C	$B_{AA} = 6.79 + \Delta B_{AA} = 0.55 + B = < 1.86$	0.91 <i>B</i> Ξ ⁻ (+/- 0.16 0.91 <i>B</i> Ξ ⁻ (+/- 0.17	⁾⁾ 3D	6.91 +/- 0.16	0.67 +/- 0.17							
MIKAGE	<mark>∧հ</mark> He	¹² C	9.93 +/- 1.72	3.69 +/- 1.72	3D	10.06 +/- 1.72	3.82 +/- 1.72							
DEMACHI- YANAGI	¹⁰ _{AA} Be	¹² C	11.77 +/- 0.13	-1.65 +/- 0.15 cf. Ex = 3.0	3D	11.90 +/- 0.13	-1.52 +/- 0.15 cf. Ex = 3.0							
HIDA	¹¹ _{AA} Be	¹⁶ O	20.26 +/- 1.15	2.04 +/- 1.23	3D	20.49 +/- 1.15	2.27 +/- 1.23							
	<mark>∆}12</mark> Be	¹⁴ N	22.06 +/- 1.15		3D	22.23 +/- 1.15								
E176	13 B-	> ¹³ C*	<i>Ex</i> = 4.9		3D	23.3 +/- 0.7	0.6 +/- 0.8							
M Danysz et al. Pl		-> <mark>%Be</mark>	Ex = 3.0		not checked yet.	, 14.7 , +/- 0.4	1.3 +/- 0.4							
R.H.Dalitz et al., Proc.	R.S.Lond.A	436(1989)1												

B_Ξ- (atomic 3D) = 0.13 MeV [¹²C- Ξ⁻], 0.17 MeV [¹⁴N- Ξ⁻], 0.23 MeV [¹⁶O- Ξ⁻].

Production of $\Lambda\Lambda$ Hypernuclei

- simultaneous implantation of two Λ's impossible
- ► Ξ^- conversion in 2Λ : $\Xi^- + p \rightarrow \Lambda + \Lambda + 28 MeV$

 \Rightarrow large probability that two $\Lambda 's$ stick to same nucleus

Decay Products of $\Lambda\Lambda$ Hypernuclei

10 µ m

P₁ (MeV/c)

100 110 120 130 140 150 160

-decay and

weak deca

Production of ΛΛ Hypernuclei at PANDA

PANDA Setup

- ► θ_{lab} < 45°: $\overline{\Xi}$ -, K- trigger (PANDA)
- ► $\theta_{lab} = 45^{\circ} 90^{\circ}$: Ξ-capture, hypernucleus formation
- $\theta_{lab} > 90^{\circ}$: γ -detection Euroball (?) at backward angles

Milestones:

- Full Monte Carlo chain including event generator, new statistical model to simulate the population of excited states
- hardware projects: Ge-detectors, secondary target, primary target...

Simulation within PANDA_ROOT

- Example: secondary ¹²C target (~2 weeks^{*)})
- Bin width 100keV

^{*)}In these simulations we assume a Ξ capture and conversion probability of 5%

(arXiv:0903.3905)

Summary

Hypernuclear physics is a multicultural activity – it links QCD and nuclei

Hypernuclei are a key to neutron stars

Hypernuclear physics needs a variety of experimental probes

γ-spectroscopy of double hypernuclei seems possible at PANDA

