Hypernuclear Physics at Panda Experimental Challenges

Patrick Achenbach · S. Bleser · J. Pochodzalla · A. Sanchez Lorente · M. Steinen *U Mainz*

with contributions from other PANDA groups

Sept. 2011

The hypernuclear landscape

Experimental Challenges for Hypernuclear Physics at PANDA

Spectroscopy of AA-hypernuclei

- many excited, particle stable states in double hypernuclei predicted
- level structure reflects levels of core nucleus

Experimental Challenges for Hypernuclear Physics at PANDA

Excursion: strangeness in compact stars

YN & YY interaction determine equation-of-state (EOS) with strangeness

[P. B. Demorest et al., *A two-solar-mass neutron star measured using Shapiro delay*, Nature 467, (2010) 1081]

Formation of double hypernuclei from Xi particles

- 1. $dE(\Xi^{-})/dx \rightarrow stop + capture$
- 2. hyperatom + atomic decay
- 3. capture in nucleus ($_{\Xi}$ -Z)
- 4. conversion: $\Xi^- + p \rightarrow \Lambda \Lambda$
- 5. hypernuclei ($_{\Lambda\Lambda}Z^*$ or $_{\Lambda}Z^*+_{\Lambda}Z^{(*)}$)

Xi hyperons may produce:

- single hypernuclei: $_{\Lambda}Z$ ($_{\Sigma}Z$)
- twin hypernuclei: $_{\Lambda}Z + _{\Lambda}Z'$
- doubly strange hypernuclei: Ξ -Z
- double hypernuclei: $_{\Lambda\Lambda}Z$
- H particle in a nucleus(?): ΛΛ

strangeness production tagged by anti-hyperon or decay products

- → forward detector for trigger and particle ID
- → PANDA at FAIR

Production mechanism and detection strategy at PANDA

Experimental Challenges for Hypernuclear Physics at PANDA

Instrumentation for hypernuclear physics at PANDA

- 1. design and fabrication of the primary target
- 2. design and development of the secondary target
- 3. design and operation of the HPGe γ -array
- 4. electromechanical cooling of HPGe crystals
- 5. integration into the PANDA target spectrometer

6. simulation of the expected performance

t c h n i c a

Experimental Challenges for Hypernuclear Physics at PANDA

Sept. 2011 P Achenbach, U Mainz

physics

- 1. design and fabrication of the primary target
- 2. design and development of the secondary target
- 3. design and operation of the HPGe γ -array
- 4. electromechanical cooling of HPGe crystals
- 5. integration into the PANDA target spectrometer
- 6. simulation of the expected performance

[Shown by F. Iazzi, PANDA Meeting 6 Sept. 11]

Experimental Challenges for Hypernuclear Physics at PANDA

- 1. design and fabrication of the primary target
- 2. design and development of the secondary target
- 3. design and operation of the HPGe γ -array
- 4. electromechanical cooling of HPGe crystals
- 5. integration into the PANDA target spectrometer
- 6. simulation of the expected performance

Stopping of the Xi particles

Experimental Challenges for Hypernuclear Physics at PANDA

The secondary target design

Experimental Challenges for Hypernuclear Physics at PANDA

Prototype developments for the secondary target

⊙ compact structure of detector and absorber:

performance of silicon strip detector in direct contact with absorbers

[S. Bleser, Diploma thesis, U Mainz, Shown at PANDA Meeting 6 Sept. 11]

⊙ frontend electronics:

minimization of mass on detecting volume: ultra-thin AI-Polyimide readout cables [J.M. Heuser et al., HadronPhysics2/JRA-ULISI]

Experimental Challenges for Hypernuclear Physics at PANDA

- 1. design and fabrication of the primary target
- 2. design and development of the secondary target
- 3. design and operation of the HPGe γ -array
- 4. electromechanical cooling of HPGe crystals
- 5. integration into the PANDA target spectrometer
- 6. simulation of the expected performance

Towards a prototype of HPGe Cluster Array

⊙ simulation of different crystal multiplicities

⊙ operation of double and triple cluster detectors

 high rate environment: radiation damages & pile-up effects

 magnetic field environment: loss of resolution

[A. Sanchez Lorente et al., NIM A 573 (2007) 410.]

Experimental Challenges for Hypernuclear Physics at PANDA

- 1. design and fabrication of the primary target
- 2. design and development of the secondary target
- 3. design and operation of the HPGe γ -array
- 4. electromechanical cooling of HPGe crystals
- 5. integration into the PANDA target spectrometer
- 6. simulation of the expected performance

Towards a prototype of HPGe Cluster Array

HPGe encapsulated crystal attached to electromechanical cooler

[M. Steinen, U Mainz, I. Kojouharov, GSI, Shown at PANDA Meeting 6 Sept. 11]

Experimental Challenges for Hypernuclear Physics at PANDA

- 1. design and fabrication of the primary target
- 2. design and development of the secondary target
- 3. design and operation of the HPGe γ -array
- 4. electromechanical cooling of HPGe crystals
- 5. integration into the PANDA target spectrometer
- 6. simulation of the expected performance

Target integration into the spectrometer

- dedicated beam pipe going
 from 150 mm to 20 mm diameter
- backward end cap calorimeter and MVD will not be used
- modular structure

[A. Sanchez Lorente, D. Rodriguez, Shown at PANDA Meeting 6 Sept. 11]

HPGe array integration into the spectrometer

[PANDA Technical Progress Report, 2005.]

θ_{lab}>90°:

- $\theta_{lab} < 45^{\circ}$: Ξ -bar, K trigger and PID in PANDA spectrometer
- $\theta_{lab} = 45^{\circ}-90^{\circ}$: Ξ -capture and hypernuclei formation
 - γ-detection with HPGe at backward angles integration of electromechanical coolers for HPGe

- 1. design and fabrication of the primary target
- 2. design and development of the secondary target
- 3. design and operation of the HPGe γ -array
- 4. electromechanical cooling of HPGe crystals
- 5. integration into the PANDA target spectrometer
- 6. simulation of the expected performance

Statistical decay model for excited hypernuclei

example:
$$\Xi^- + {}^{12}C \Longrightarrow {}^{A+Z+H}{}_{\Xi}Z \implies {}^{13}{}_{\Lambda\Lambda}B^*$$

Population of excited, particle-stable states in double hypernuclei?

conversion width $\Xi + p \Rightarrow \Lambda\Lambda$ about $\Gamma = 1$ MeV precise Ξ^- binding energy not yet known (0.6 – 4 MeV) typical excitation energy ~ a few MeV/nucleon fragmentation of excited projectile remnants are well understood in that regime de-excitation of light nuclei via Fermi break-up process

[A. Sanchez Lorente, A. Botvina et J.Pochodzalla, PLB 697 (2011) 222-228)]

Population of excited double hypernuclear states

 \Rightarrow production of excited states of double hypernuclei is significant

[A. Sanchez Lorente, A. Botvina et J.Pochodzalla, PLB 697 (2011) 222-228]

Experimental Challenges for Hypernuclear Physics at PANDA

Population of excited double hypernuclear states

[A. Sanchez Lorente, A. Botvina et J.Pochodzalla, PLB 697 (2011) 222-228]

Experimental Challenges for Hypernuclear Physics at PANDA

Background suppression by decay pion correlation

Experimental Challenges for Hypernuclear Physics at PANDA

Identification of individual isotopes

PANDA will explore several targets: ⁹Be, ¹⁰B, ¹¹B, ¹²C, ¹³C

- sum of excited states
- $-B_{\Xi} = 0.5 \text{ MeV}$
- sequential pionic decay prob. $\approx 0.45 0.03A$
- production probability pionic decay probability

 \Rightarrow each target allows for the unique assignment of observable transitions by comparing the expected yields

[Simulations by A. Sanchez Lorente, U Mainz.]

Summary

- Hypersystems provide a link between nuclear physics and QCD to study basic properties of strongly interacting systems
- antiproton collisions with nuclei are the ideal tool to produce exclusive Xi-antiXi pairs in nuclei at moderate momenta
- many experimental challenges have to be overcome to realize such measurements
- A statistical model predicts a large probability for the population of individual, excited states in double Λ hypernuclei
- γ-spectroscopy of these double hypernuclei at PANDA is feasible