Challenges in Hypernuclear Physics of the 21st Century

Patrick Achenbach U Mainz

Nov. 2011

Topics selected for this talk

two current issues in strangeness physics

- strangeness in neutron stars
- charge symmetry breaking in nuclei

two experimental programs in strangeness physics

- hypernuclear electroproduction experiments at JLab & MAMI
- double strange hypernuclear experiments at PANDA

Compact stars & nuclear forces

[P. B. Demorest et al., *A two-solar-mass neutron star measured using Shapiro delay*, Nature 467, (2010) 1081]

assumed YN & YY interaction determines equation-of-state (EOS) \rightarrow prediction of mass-radius relation

Quarks & nuclear forces

Charge Symmetry Breaking

- Protons and neutrons are the two isospin states of the nucleon
- Protons and neutrons have different masses
- Coulomb interaction would make p (uud) heavier than n (udd)
- The mass difference between up and down quarks is the strong-interaction effect that breaks charge symmetry

Strong CSB in S = 0 sector makes neutrons decay into protons and is therefore decisive for the structure of our universe

CSB in nuclei and hypernuclei

without ΛN charge symmetry breaking $\Rightarrow B_{\Lambda}$ of mirror nuclei identical

Coulomb interaction and modifications of nuclear structure due to Coulomb interaction may mask the effect of the strong CSB

Spectroscopy of AA-hypernuclei

- many excited, particle stable states in double hypernuclei predicted
- level structure reflects levels of core nucleus

Challenges in Hypernuclear Physics of the 21st Century

Nov. 2011 P Achenbach, U Mainz Electroproduction of hypernuclei and hyperfragments

Challenges in Hypernuclear Physics of the 21st Century

Nov. 2011 P Achenbach, U Mainz

Electro-production of hypernuclei and hyperfragments

quasi-free Λ production (continuum)

secondary production of hyperfragments (continuum)

[prepared by Liguang Tang]

Challenges in Hypernuclear Physics of the 21st Century

Nov. 2011 P Achenbach, U Mainz

decay pion sepctroscopy

Hypernuclear spectroscopy

·																					
	12		¹² C	t				$^{20}_{\Lambda}\text{Mg}$	$^{21}_{\Lambda}Mg$	$^{22}_{\wedge} Mg$	$^{23}_{\wedge}\text{Mg}$	$^{24}_{\wedge}\text{Mg}$	²⁵ Mg	$^{26}_{\wedge}\text{Mg}$	$^{27}_{\wedge}\text{Mg}$	²⁸ ∧Mg	²⁹ Mg	³⁰ Mg	³¹ Mg	$^{32}_{\wedge}\text{Mg}$	³³ Mg
ROTON NUMBER	11		9Be	arge					²⁰ ∧Na	²¹ ∧Na	²² ∧Na	²³ Na	²⁴ ∧Na	²⁵ ∧Na	$^{26}_{\Lambda}$ Na	^27 Na	²⁸ ∧Na	²⁹ ∧Na	^30Na	³¹ Na	³² ∧Na
	10		⁷ Li	Т			^17∧Ne	$^{18}_{\Lambda}\text{Ne}$	¹⁹ ∧Ne	²⁰ ∧Ne	²¹ ∧e	²² / _^ Ne	²³ ∧Ne	$^{24}_{\Lambda}\text{Ne}$	²⁵ ∧Ne	$^{26}_{\wedge}$ Ne	$^{27}_{\Lambda}\text{Ne}$	²⁸ ∧Ne	²⁹ ∧Ne	³⁰ ∧Ne	$^{31}_{\Lambda}\text{Ne}$
	9						$^{16}_{\wedge}F$	$^{17}_{\Lambda}F$	^18 ∧ F	19 m //	²⁰ ∧F	$^{21}_{\Lambda} { m F}$	$^{22}_{\wedge}F$	$^{23}_{\Lambda}F$	$^{24}_{\wedge}F$	$^{25}_{\wedge}F$	$^{26}_{\Lambda}F$	$^{27}_{\Lambda}F$	$^{28}_{\wedge}{ m F}$	$^{29}_{\wedge}F$	^30 F
	8				^13 ∧	^14 O	^15 ∧ O	¹⁶ ∧O	17 / O	¹⁸ O	¹⁹ ⊃	²⁰ ∧O	²¹ ∧O	²² ∧O	^23 ^	^24 O	²⁵ ∧O	$^{26}_{\Lambda} O$	^27 O		
	7				$^{12}_{\Lambda} N$	$^{13}_{\wedge} N$	$^{14}_{\wedge} N$	15 N A	$^{16}_{\Lambda}$ N	$^{17}_{\Lambda}$ N	$^{18}_{\Lambda} N$	¹⁹ N	$^{20}_{\wedge} N$	21 ^ M	nissir	ng m	ass s	sepct	rosc	ору	
	6			$^{10}_{\Lambda}\text{C}$	^11 ∧C	¹² ∧C	13 ^	¹⁴ ∧C	¹⁵ ∧C	¹⁶ ∧C	^17 C	^18 ∧ C	¹⁹ ∧C	²⁰ ℃	²¹ ∧C	<u>n</u> –	×Λ:	([K [−] , π	, -)	
	5			⁹ ∧B	¹⁰ ∧B	11 ^B	¹² ^B	¹³ ∧B	¹⁴ ∧B	¹⁵ ∧B	^16 ∧ B	^17 ∧ B	^18 B			1		(K_{stop}^{-}	, <i>π</i> ⁻)	
	4		⁷ ∧Be	⁸ ∧Be	⁹ Ве	¹⁰ _^ Be	¹¹ Be	$^{12}_{\Lambda}\text{Be}$	$^{13}_{\Lambda}\text{Be}$	^14 Be	$^{15}_{\Lambda}\text{Be}$							($[\pi^+, K]$	(*)	
Ч	3		⁶ ∧Li	7 //L1	⁸ ∧Li	⁹ ∧Li	¹⁰ ⊥i	^11Li	¹² ∆Li							<i>р</i> –	→ Λ:	(e,e'l	K ⁺)	
	2	^₄ ∧He	⁵ ∧He	⁶ ∧He	⁷ ∧He	⁸ ∧He	$^9_{\wedge} \text{He}$											(K_{stop}^{-}	$,\pi^{0})$	
	1	3.H	$^{4}_{\Lambda}\text{H}$	⁵∧H	⁶ ∧H	7∧H	⁸ ∧H									рр	$\rightarrow n$	۱ : ((π ⁻ , K	(*)	
	0	ΛN					 – only single Λ-hypernuclei close to valley of stability 														
		1	2	3	4	5	 only very few AA-hypernuclei events 														

NEUTRON NUMBER

Jefferson Lab, VA

Electron beam facilities

$$E_{CM} = \sqrt{2E_{\gamma}M_p + M_p^2} = M_{\Lambda} + M_{K^+} = 1,6 \text{GeV}$$
 $E_{\gamma} = 0,9 \text{GeV}$ CEBAFMAMI-C I beam energy 6.0 GeV $1.5-1.6 \text{ GeV}$ available electron
machines:
1. CEBAF at Jefferson Lab
2. MAMI-C in Mainzbeam energy 6.0 GeV $1.00 \mu \text{A}$
electrons/sbeam size $100 \mu \text{M}$
 6×10^{14} $100 \mu \text{A}$
electrons/s $100 \mu \text{M}$
electrons/s

Challenges in Hypernuclear Physics of the 21st Century

Nov. 2011

P Achenbach, U Mainz

Electroproduction off the nucleon with MAMI-C

Focussing particle spectrometers

Magnetic focusing spectrometers:

- 3 high resolution $\Delta p/p \sim 10^{-4}$ spectrometers
- one short orbit spectrometer (KAOS, since 2008)
 Challenges in Hypernuclear Physics of the 21st Century

Nov. 2011 P Achenbach, U Mainz

Angular dependence of Λ-hypernuclei production

- kaon detection at forward angles: $\Theta_{\rm K} < 10^{\circ}$
- large kaon angle acceptance

Missing mass spectroscopy

$$\begin{split} E_X &= E_e - E_{e'} + M_{targ} - E_K = \omega + M_{targ} - E_K, \\ \vec{P}_X &= \vec{q} - \vec{p}_K, \end{split}$$

E05-115 (2009) preliminary

Kaos 2009 beam-time

⁷Li(e,e'K⁺)⁷_AHe

first reliable observation of $^{7}_{\Lambda}$ He with good statistics

1. Present E01-011 Result (Preliminary)

ID	-Β _Λ [MeV]	Cross section [nb/sr]
#1	-5.68±0.03 (stat.)	26±3 (stat.)
	±0.22 (sys.)	±10 (sys.)

2. Theoretical calculations

 $\begin{array}{ll} \text{Cross section : Sotona et. al.} \\ & -\text{B}_{\Lambda} & : \text{Hiyama et. al.} \\ (1.3 < \text{E}_{\gamma} < 1.6 \text{ GeV}, \ 1 < \theta_{\text{K}} < 13 \text{ deg.}) \end{array}$

Jπ	-B _A	Cross section [nb/sr]						
	[INEV]	SLA	C4	KMAID				
1/2+	-5.36	13.2	16.2	9.7				

[prepared by Osamu Hashimoto]

Results for the elementary process

[P. Achenbach et al. (A1 Collaboration), arXiv:1104.4245]

- first time measurement of cross-section at low Q^2
- only small differences to photoproduction data observed
- original K-Maid model excluded with high significance

Detection of hypernuclei

Second approach: decay-pion spectroscopy

status: first experiments have been performed in Mainz

Hypernuclei from a ⁹Be target

Two-body decays of 12 different hypernuclei

break-up mode	Q value (MeV)	π⁻ decay	p_{π} (MeV/c)		
⁹ ∧Li	-	⁹ Be + π⁻	121.18		
р + ⁸ _л Не	-13.817	⁸ Li + π ⁻	116.40		
n + ⁸ _A Li	-3.756	⁸ Be + π⁻	124.12		
2p + ⁷ _Λ Η	-40.328	⁷ He + π⁻	135.17		
	(B _∧ =6.1)				
d + ⁷ _A He	-12.568	⁷ Li + π ⁻	114.61		
2n + ⁷ _{\L} Li	-12.218	⁷ Be + π⁻	108.02		
³ He + ⁶ _A H	-29.608	⁶ He + π⁻	133.47		
	(B _∧ =5.1)				
³ H + ⁶ _Λ He	-9.745	⁶ Li + π ⁻	108.39		
3n + ⁶ _^ Li	-18.957	⁶ Be + π⁻	100.58		
$\alpha + {}^{5}_{\Lambda}H$	-11.749	⁵ He + π⁻	133.42		
	(B _∧ =4.1)				
$n + \alpha + {}^{4}_{\Lambda}H$	-12.005	⁴ He + π⁻	132.95		
⁶ He + ³ _Λ H	-18.183	³ He + π⁻	114.29		

[from Liguang Tang]

Stopping and decay in Be

Challenges in Hypernuclear Physics of the 21st Century

Nov. 2011

P Achenbach, U Mainz

Experimental realisation

to beam dump kaons pions pions electron beam

- 1500 MeV beam energy
- zero-degree kaon tagging by Kaos
- decay-pion detection with
 Spectrometer A & C (δp/p <10⁻⁴)

Double strange hypernuclear experiments

Formation of double hypernuclei from Xi particles

- 1. $dE(\Xi^{-})/dx \rightarrow stop + capture$
- 2. hyperatom + atomic decay
- 3. capture in nucleus ($_{\Xi}$ -Z)
- 4. conversion: $\Xi^- + p \rightarrow \Lambda \Lambda$
- 5. hypernuclei ($_{\Lambda\Lambda}Z^*$ or $_{\Lambda}Z^*+_{\Lambda}Z^{'*}$)

Xi hyperons may produce:

- single hypernuclei: $_{\Lambda}Z$ ($_{\Sigma}Z$)
- twin hypernuclei: $_{\Lambda}Z + _{\Lambda}Z'$
- doubly strange hypernuclei: $_{\Xi}$ -Z
- double hypernuclei: $_{\Lambda\Lambda}Z$
- H particle in a nucleus(?): ΛΛ

strangeness production tagged by anti-hyperon or decay products

- → forward detector for trigger and particle ID
- → PANDA at FAIR

Production mechanism and detection strategy at PANDA

Challenges in Hypernuclear Physics of the 21st Century

Nov. 2011 P Achenbach, U Mainz

Instrumentation for hypernuclear physics at PANDA

Open issues being studied by the Panda Hypernuclear Groups

- 1. design and fabrication of the primary target
- 2. design and development of the secondary target
- 3. design and operation of the HPGe γ -array
- 4. electromechanical cooling of HPGe crystals
- 5. integration into the PANDA target spectrometer
- 6. simulation of the expected performance

[Shown by F. lazzi, PANDA Meeting 6 Sept. 11]

Open issues being studied by the Panda Hypernuclear Groups

- 1. design and fabrication of the primary target
- 2. design and development of the secondary target
- 3. design and operation of the HPGe γ -array
- 4. electromechanical cooling of HPGe crystals
- 5. integration into the PANDA target spectrometer
- 6. simulation of the expected performance

Stopping of the Xi particles

The secondary target design

Challenges in Hypernuclear Physics of the 21st Century

[PANDA Physics Performance Report, 2009, p. 21]

Prototype developments for the secondary target

frontend electronics:

minimization of mass on detecting volume: ultra-thin Al-Polyimide readout cables [J.M. Heuser et al., HadronPhysics2/JRA-ULISI]

[S. Bleser, U Mainz]

The second

Open issues being studied by the Panda Hypernuclear Groups

- 1. design and fabrication of the primary target
- 2. design and development of the secondary target
- 3. design and operation of the HPGe γ -array
- 4. electromechanical cooling of HPGe crystals
- 5. integration into the PANDA target spectrometer
- 6. simulation of the expected performance

Towards a prototype of HPGe Cluster Array

simulation of different crystal multiplicities

operation of double or triple cluster detectors

[M. Steinen, U Mainz, I. Kojouharov, GSI]

high rate environment: radiation damages & pile-up effects

magnetic field environment: loss and recovery of energy resolution [A. Sanchez Lorente et al., NIM A 573 (2007) 410.]

Challenges in Hypernuclear Physics of the 21st Century

[M. Steinen, U Mainzl]

Open issues being studied by the Panda Hypernuclear Groups

- 1. design and fabrication of the primary target
- 2. design and development of the secondary target
- 3. design and operation of the HPGe γ -array
- 4. electromechanical cooling of HPGe crystals
- 5. integration into the PANDA target spectrometer
- 6. simulation of the expected performance

Towards a prototype of HPGe Cluster Array

Open issues being studied by the Panda Hypernuclear Groups

- 1. design and fabrication of the primary target
- 2. design and development of the secondary target
- 3. design and operation of the HPGe γ -array
- 4. electromechanical cooling of HPGe crystals
- 5. integration into the PANDA target spectrometer
- 6. simulation of the expected performance

Target integration into the spectrometer

dedicated beam pipe going from 150 mm to 20 mm diameter

backward end cap calorimeter and MVD will not be used

modular structure

[A. Sanchez Lorente, D. Rodriguez, Shown at PANDA Meeting 6 Sept. 11]

Challenges in Hypernuclear Physics of the 21st Century

Nov. 2011 P Achenbach. U Mainz

HPGe array integration into the spectrometer

- θ_{lab} < 45°: Ξ -bar, K trigger and PID in PANDA spectrometer
 - θ_{lab} = 45°-90°: Ξ -capture and hypernuclei formation
 - γ-detection with HPGe at backward angles integration of electromechanical coolers for HPGe

Challenges in Hypernuclear Physics of the 21st Century

θ_{lab}>90°:

Open issues being studied by the Panda Hypernuclear Groups

- 1. design and fabrication of the primary target
- 2. design and development of the secondary target
- 3. design and operation of the HPGe γ -array
- 4. electromechanical cooling of HPGe crystals
- 5. integration into the PANDA target spectrometer
- 6. simulation of the expected performance

Statistical decay model for excited hypernuclei

example:
$$\Xi^- + {}^{12}C \Longrightarrow {}^{A+Z+H}{}_{\Xi}Z \implies {}^{13}{}_{\Lambda\Lambda}B^*$$

Population of excited, particle-stable states in double hypernuclei?

conversion width $\Xi + p \Rightarrow \Lambda\Lambda$ about $\Gamma = 1$ MeV precise Ξ^- binding energy not yet known (0.6 – 4 MeV) typical excitation energy ~ a few MeV/nucleon fragmentation of excited projectile remnants are well understood in that regime de-excitation of light nuclei via Fermi break-up process

[A. Sanchez Lorente, A. Botvina et J.Pochodzalla, PLB 697 (2011) 222- 228)]

Population of excited double hypernuclear states

 \Rightarrow production of excited states of double hypernuclei is significant

[A. Sanchez Lorente, A. Botvina et J.Pochodzalla, PLB 697 (2011) 222- 228]

Challenges in Hypernuclear Physics of the 21st Century

Nov. 2011 P Achenbach, U Mainz

Background suppression by decay pion correlation

Challenges in Hypernuclear Physics of the 21st Century

Nov. 2011 P Achenbach, U Mainz

Summary

- Hypersystems provide a link between nuclear physics and QCD to study basic properties of strongly interacting systems
- many experimental challenges to realize hypernuclear physics
- the only European experiments in current hypernuclear physics:

charged particle spectroscopy of single hypernuclei at MAMI

γ-spectroscopy of double hypernuclei at PANDA