

The secondary target for the

hypernuclear experiment at PANDA*

HELMHOLTZ GEMEINSCHAFT

Helmholtz-Institut Mainz

S. Bleser¹, F. Iazzi², I. Kojouharov³, J. Pochodzalla¹, A. Sanchez Lorente¹, M. Steinen¹

¹Mainz, ²Turin, ³GSI

Production and detection of double Λ hypernuclei at PANDA

Steps of the double hypernuclei production at the PANDA experiment Primary carbon target

• production of low momentum Ξ^{-} hyperons in p
+ N - reactions Secondary active sandwich target • stopping of the Ξ^{-} hyperons

The hypernucler setup in the PANDA-detector

Holding frame for the secondary target

• atomic capture of Ξ^{-} within different absorber materials (⁹Be, ^{10,11}B or ^{12,13}C) • capture of Ξ^{-} by nuclei • conversion of Ξ^{-} hypernuclei into double Λ hypernuclei $(\Xi^{-}p \rightarrow \Lambda\Lambda + 28 \text{ MeV})$ tracking and identification of their weak decay products

• $\theta_{lab} < 45^{\circ}$: $\overline{\Xi}^+$, K⁺ trigger (PANDA)

primary target: $\overline{p} + {}^{12}C \rightarrow \overline{\Xi}^+ + \Xi^-$

secondary active target: Ξ^- capture, production of hypernuclei

 $\theta_{lab} > 90^{\circ}$: γ detection in backward direction

Design of the secondary target

Momentum distributions of Ξ^{-} hyperons entering the active volume (black curves) and of the stopped Ξ^{-} in the absorber materials carbon and beryllium (red curves). Only Ξ^{-} hyperons with a momentum below 250 MeV/c in angles from 40° to 90° and in a radius of up to 20 mm will be stopped before decaying.

Stopped Ξ^{-} hyperons in twenty 1.0 mm thick carbon absorbers (at the top) and twenty 1.0 mm thick beryllium absorbers (below) from 200,000 Ξ^{-} hyperons generated isotropically with a momentum range of 0.1 GeV/c to 0.5 GeV/c.

According to the expectation the number of stopped Ξ^2 hyperons differs for carbon and beryllium. So the absorber thickness of the layers has to be adjusted depending on the material.

As the three varied views show most of the Ξ^{-} will be stopped at the entrance of the passive volume. As a consequence the number of absorber layers can be reduced.

Hardware development

Flexible microcables

Development of ultra-thin flexible cables in cooperation with SE SRTIIE made of foiled dielectric FDI-A-20 (Al 10 μm, Pi 10 μm) to route the signals from the silicon strip

sensors to the readout chips by assuring low material budget.

Readout board for cable testing

Mounting of the sensor-cable-pitch adapter assembly to test the cable performance. Readout by 3 APV25-S1 chips with 128 channels each.

Sensor-cable-pitch adapter assembly Cable with 384 traces connected to silicon strip detector via tab-bonding on the left hand side and to a pitch adapter (50 µm to 44 μ m) on the right hand side. Mock-up in progress by SE SRTIIE.

> * Supported by the Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie (contract No.06MZ176). This Research is part of the EU integrated infrastructure initiative Hadronphysics project under contract number RII3-CT-2004-506078.