

The secondary target for the hypernuclear experiment at PANDA

S. Bleser¹, F. Iazzi², J. Pochodzalla¹, A. Sanchez Lorente³, M. Steinen¹

¹Institut für Kernphysik, Mainz; ²Politecnico di Torino and INFN, Sez. di Torino; ³Helmholtz-Institut Mainz

Helmholtz-Institut Mainz

bmb+

Sebastian Bleser

Institut für Kernphysik Johannes Gutenberg-Universität Mainz

SNP school 2012, Sendai, February 15, 2012

Motivation

SNP school 2012

02/15/2012

Motivation

Production and detection of Λ - Λ -hypernuclei at PANDA

Primary Target (C-12):

• formation of Ξ^- -particles in \overline{p} + ¹²C – reactions

Secondary Target (Be, B, C):

- deceleration of Ξ[−]-particles
- integration in the atomic shell of absorber atoms
- capture of Ξ^- by nucleus
- formation of $\Lambda\text{-}\Lambda\text{-}hypernuclei by conversion: <math display="inline">\Xi^-p\to\Lambda\Lambda$
- detection of weak decay products

Ge detector array:

- γ -spectroscopy of Λ - Λ -hypernuclei with Ge detectors
- → Poster of Marcell Steinen

Hypernuclear setup

photons from excited double hypernuclei emitted isotropically

high particle flux in forward direction

⇒ arrangement of Germanium detector array in backward direction

d a

Primary target

Task of the primary target: production of slow Ξ^-

Requirements:

- minimal hadronic background in backward direction
- constant luminosity of p-beam
- ⇒ beam losses, mainly due to coulomb scattering, must be kept low
- ⇒ ¹²C micro-wire target with f thickness 0.02 0.04 µm

- controlling interaction rates by moving target into beam halo
- easy replacement

SNP school 2012

Design of the secondary target

Requirements for the secondary target

- adjusted to stop time and life time of Ξ⁻ (τ = 0.164 ns) as well as geometry
 - ⇒ compact structure without gaps $(t_{stop} \approx 0.06 \text{ ns})$
- tracking of Ξ⁻ and the decay products of Λ-Λ-hypernuclei
- ⇒ alternating layers of Si strip detectors and absorber material

red:

20 layers of double sided silicon strip detectors (thickness 300 µm) in each block

gray:

20 layers of absorbers (thickness 1 mm) different for each block (⁹Be, ^{10,11}B or ^{12,13}C)

Experimental tests

Compact structure \Rightarrow test of absorber contact

Si strip detector:

- 20 x 20 mm²
- thickness 300 µm
- 384 strips
- pitch 50 µm
- readout of the p-side with 3 APV25-S1 Chips

Experimental result for boron

comparison of decay constant of the pulseshape in measurements with direct contact and with a gap between sensor and absorber

 \Rightarrow no significant change, other effects predominant

similar results for Be and C

 \Rightarrow direct contact possible

Simulations

Simulation results after generation of 200,000 Ξ^- -particles with momentum range 100 MeV/c to 500 MeV/c

Stopped Ξ^- in beryllium absorbers of 20 x 1.0 mm thickness

i Fi

SNP school 2012

Simulations

Number of stopped Ξ^- in the absorber layers of 1.0 mm thickness

> 90% stopped Ξ^- in inner 10 layers \Rightarrow number of absorbers must be optimized

SNP school 2012

02/15/2012

Assembly of the secondary target

Readout of double sided silicon strip detectors:

Sensor and readout boards connected by ultra thin microcables via TAB bonding (Tape Automated Bonding)

Readout boards hosting pitch adapter, frontend chips and connector

Ultra-thin flexible cables

Manufacturer of cables:

State Enterprise Scientific Research Technological Institute of Instrument Engineering (Ukraine)

holes in polyimid layer for ultra-sonic TAB bonding

material: "foiled dielectric" FDI-A-20

- 10µm aluminium layer
- 10µm polyimide layer

 \Rightarrow very low material budget: \approx 99.75% of 1 MeV photons pass 10 cables

SNP school 2012

Outlook

- Simulations on pion tracking
 ⇒ Optimization of absorber thickness and number
- Test of the produced cables and development of further prototypes
- Design and test of piezo motors: in vacuum, radiation hardness, reliability, ...

The secondary target for the hypernuclear experiment at PANDA

S. Bleser¹, F. Iazzi², J. Pochodzalla¹, A. Sanchez Lorente³, M. Steinen¹

¹Institut für Kernphysik, Mainz; ²Politecnico di Torino and INFN, Sez. di Torino; ³Helmholtz-Institut Mainz

Helmholtz-Institut Mainz

bmb+l

Großgeräte der physikalischer

Thank you for the attention!