The Physics of Murder

Copyrighted Material

Means

Don Light

- Motive - Opportunities

Copyrighted Material

Prospects for Hypernuclear Physics at Mainz: from to KAOS@MAMI PANDA@FAIR

Josef Pochodzalla

The means

Collaborative Research Centre 1044

- The Low-Energy Frontier of the Standard Model
 From Ouarks and Gluons To Hadrons and Nuclei
- Funding for MAMI and BES activities
- Sub-Project N (assoc. PI O.Hashimoto, L. Tang)
- 4 (+4+4) years

Helmholtz-Institute Mainz HIM

- Structure, Symmetry und Stability of Matter and Antimatter
- 6 Sections : SPECF Hadron spectroscopy and Flavor
- Funding for only FAIR activity
- Permanent
- Cluster of Excellence PRISMA
 - Precision Physics, Fundamental Interactions and Structure of Matter

PRISMA

- 4 research fields, 3 structural measures
- Research field C: Structure of Matter
- 5 (+5) years

The motive

Comprehensive description of strange nuclei in terms of basic principles (QCD) to allow quantitative predictions in regions not directly accessible by experiments

hyperons in neutron stars ?

existence of H-particle ?

JGU Masses of Neutron Stars

The Hyperon Puzzle in Neutron Stars

Three (and four) baryon forces are essential for understanding the EOS at high density

A two solar mass neutron star is compatible with the presence of hyperons

But even if hyperons do *not* appear in neutrons stars, why so ? \Rightarrow Need to understand Y-N, Y-Y, Y-N-N, ... interactions !

JGU CSB, 3BF ...

- A. Nogga, E. Hiyama "CSB is a puzzle"
- ► CSB |∆E |~100keV
- ► 3 baryon force: YNN ?
- Precise <100keV information on ground state masses can serve as an extremely valuable input

^{JG} The ${}^{4}_{\Lambda}$ H case

The A=7 Hypernuclei

JGU

JGIN LQCD puts the H-Particle on the agenda

Takashi Inoueet al., Nucl. Phys A 881, 28 (2012)

- Recent lattice QCD calculations predict possibly a bound or a slightly unbound H-dibaryon
- Being so close to the threshold will undoubtedly spur investigations into the consequences for doubly strange hypernuclei as well as the equation of state of dense matter.

Where can the H be seen?

• Neutron stars \rightarrow H cluster stars

X. Y. Lai, C. Y. Gao and R. X. Xu, arXiv:1107.0834v3

$$m_M^* \simeq m_M \left(1 - \alpha_{BR} \frac{\rho}{\rho_0}\right)$$

- \blacktriangleright free coalescence/FSI in energetic HI collisions Λ O
 - Time scale t ~ 10⁻²³s
 - ▶ JPARC, HI reactions at RHIC, ALICE, FAIR
- Double hypernuclei as doorway state/mixing
 - Time scale ~ 10⁻¹⁰s
 - JPARC, FAIR
 - note: in this situation we are dealing with an H at non-zero density!

The opportunity (I)

High Resolution Decay Pion Spectroscopy at MAMI

Anselm Esser, Sho Nagao, Florian Schulz

JGU Decay pion spectroscopy

The prospects

JGU

	12		¹² C	Target				$^{20}_{\Lambda}\text{Mg}$	$^{21}_{\Lambda} Mg$	$^{22}_{\Lambda}\text{Mg}$	$^{23}_{\Lambda}\text{Mg}$	$^{24}_{\Lambda}\text{Mg}$	²⁵ ∧Mg	$^{26}_{\Lambda}Mg$	²⁷ ∧Mg	²⁸ ∧Mg	²⁹ ∧Mg	³⁰ ∧Mg	$^{31}_{\Lambda}Mg$	$^{32}_{\wedge}\text{Mg}$	$^{33}_{\wedge}\text{Mg}$
PROTON NUMBER	11		⁹ Be						²⁰ ∧Na	²¹ ∧Na	²² ∧Na	²³ ∧Na	²⁴ ∧Na	²⁵ ∧Na	²⁶ ∧Na	²⁷ ∧Na	²⁸ ∧Na	²⁹ ∧Na	^³⁰Na	³¹ ∧Na	$^{32}_{\Lambda}$ Na
	10		⁷ Li				$^{17}_{\Lambda}\text{Ne}$	$^{18}_{\Lambda}\text{Ne}$	¹⁹ ∧Ne	²⁰ / _^ Ne	$^{21}_{\Lambda}\text{Ne}$	$^{22}_{\Lambda}\text{Ne}$	$^{23}_{\wedge}\text{Ne}$	$^{24}_{\wedge}\text{Ne}$	$^{25}_{\wedge} \mathrm{Ne}$	$^{26}_{\Lambda}$ Ne	$^{27}_{\Lambda}\text{Ne}$	²⁸ ∧Ne	²⁹ ∧Ne	³⁰ ∧Ne	$^{31}_{\Lambda}$ Ne
	9						$^{16}_{\Lambda}F$	$^{17}_{\Lambda}F$	$^{18}_{\Lambda}F$	^19 ∧ F	$^{20}_{\Lambda}F$	$^{21}_{\Lambda}F$	$^{22}_{\wedge}F$	$^{23}_{\Lambda}F$	$^{24}_{\wedge}F$	$^{25}_{\Lambda}F$	$^{26}_{\Lambda}F$	$^{27}_{\Lambda}F$	$^{28}_{\Lambda}F$	$^{29}_{\Lambda}F$	³⁰ ∧F
	8				¹³ ∧0	¹⁴ ∩	¹⁵ ∧O	¹⁶ ∧O	^17 O	¹⁸ O	¹⁹ ∧O	²⁰ ∧O	²¹ ΛΟ	²² 0	²³ ∧O	²⁴ ∩	²⁵ ∧O	²⁶ ∧O	²⁷ ∧O		
	7				$^{12}_{\Lambda} N$	$^{13}_{\Lambda}$ N	$^{14}_{\wedge}$ N	$^{15}_{\Lambda}$ N	¹⁶ ∧N	$^{17}_{\Lambda}$ N	¹⁸ N	¹⁹ ∧N	$^{20}_{\Lambda}$ N	$^{21}_{\Lambda}$ N	$^{22}_{\Lambda}{ m N}$	$^{23}_{\Lambda}{ m N}$	$^{24}_{\Lambda}{ m N}$				
	6			$^{10}_{\Lambda}\text{C}$	¹¹ ∧C	¹² ∧C	¹³ ∧C	¹⁴ ∧ C	¹⁵ ∧C	¹⁶ ∧C	¹⁷ C	¹⁸ ∧C	¹⁹ ∧C	²⁰ ∧C	²¹ ∧C	<u>n</u> –	→ Λ:	(′ Κ ⁻,π	<i>τ</i> [−])	
	5			⁹ ∧B	¹⁰ A	¹¹ AB	¹² ∧B	¹³ ∧B	¹⁴ ∧B	¹⁵ ∧B	^16 ∧ B	¹⁷ ∧B	¹⁸ ∧B					(K_{stop}^{-}	$,\pi^{-})$	
	4		⁷ ∧Be	⁸ ^Be	⁹ ∧Be	¹⁰ ∧Be	¹¹ ∧Be	¹² ∧Be	¹³ ∧Be	^14 Be	^15 ∧ Be							($(\pi^+, m{k})$	(*)	
	3		⁶ ∧Li	⁷ ∧Li	⁸ ∧Li	°∧Li	¹⁰ ⊥i	¹¹ ↓Li	¹² ⊥i							р –	→ Λ:	(e,e'l	(+)	
	2	$^{4}_{\wedge}\text{He}$	₅^He	⁶ ∧He	⁷ ∧He	⁸ ∧He	⁹ ∧He											((K_{stop}^{-})	$,\pi^{\circ})$	
	1	³H	₄H	⁵∧H	⁶ ∧H	$^{7}_{\Lambda}$ H	⁸ ∧H									рр	$\rightarrow n$	1: ($(\pi^-, k$	(*)	
	0	ΛN																			
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20

NEUTRON NUMBER

JGU Fermi breakup of excited hypernuclei

See also poster of Majling

JGU Pion detection

- Spectrometer A (red)
- Spectrometer C (green)
- Momentum resolution $\Delta p/p = 10^{-4} \Rightarrow \Delta m < 30 \text{keV/c}$
- Solid angle: 28 msr
- Momentum acceptance
 - Spek A: 20%
 - ▶ Spek C: 25%
- Length of trajectories
 - Spek A:10.75m
 - Spek C: 8.53m
- Gas threshold Cherenkov detectors for pion/electron separation

JGU What can be expected

relative yield per 50 keV/c

JGU Setup of the Pilot run 2011

Data analysis

Main challenge: Huge positron background at 0° in KAOS produced by bremsstrahlung conversion: 10⁶/µA

700

-5

- Determination of best parameters for kaon selection:
 - Single KAOS arm time-of-flight
 - Specific energy loss
 - Threshold Cherenkov light yield
 - Optimisation of K⁺ selection in an ex the

 Coincidence time determination from different spectrometer

time-of-flight [ns]

200

400

800

momentum [Me

600

0

5

coincidence time [ns]

10

Anselm Esser (PhD Mainz) Sho Nagao (PhD Sendai) Florian Schulz (PhD Carl Zeiss fellow)

JGU Decay pion spectroscopy

- Promising but not yet conclusive!
- Need better statistics!!

Dedicated KAOS setup

- Lead ρ=11.35 g/cm²
 - Nuclear interaction length 199.6 g/cm²
 - Radiation length X0=6.37g/cm²

- Reduction of background at increased luminosity
- Optimized by GEANT simulations: $I_e = 22\mu A d_{Pb} = 10 cm \rightarrow 14 cm$
- Improvements: 3 TOF walls, increased TOF path, 2 Č-detectors
- Experiment will start October 23rd 2012

^{JG} Missing Mass Studies of Hypernuclei

- Fiber detector planes are fully assembled, calibrated and installed Adrian Weber (Diploma thesis)
- Detector test scheduled for December 17th 2012
- Problem
 - huge e⁺ and e⁻ single rate
 - pair conversion
- Solution
 - Online m.m.-trigger
 - ▷ correlate >30⊗2000 channels
 - use also track information
 - ▷ flexibility (different beams, magnet setting...) → programmable
 - Pb in front of last TOF wall ?
 - avoid bending plane ?
- First pilot run (d-target) early 2013

The opportunity (II)

Excited State Spectroscopy of Double

[™]™ [™]C

12 B

10 Li

⁸He

12 C

17 B

Li

He

2B

THE HE THE HE

ili

He

Li

He

ABO ABO ABO BO

⁶He

ALI

10 B

10 N 10 N

B

Be

Li

Be

⁹He ¹⁰He

5 B

¹³Be ¹⁴Be

12 Li

B

B

14 C

Sebastian Bleser, Marcel Steinen

JGU FAR Facility for Antiproton and Ion Research

GSI, Darmstadt

- heavy ion physics
- nuclear structure
- atomic and plasma physics
- cancer therapy

- FAIR: New facility
 - higher intensities & energies
 - Antiproton Physics

JGU The FAIR Facility

- Uranium up to 35 AGeV
- Protons up to 30 GeV/c
- Broad range of secondary radioactive beams, up to 10000 more
- Antiprotons 0 15 GeV/c

Timeline of FAIR

JGU

- At present only "Modularized Start Version" financed
 - SIS 100
 - Experimental halls for CBM and APPA
 - SUPER FRS for NuSTAR
 - Antiproton facility for PANDA

Properties of the PANDA Detector

- 4π coverage
- high rates
- good PID
- momentum resolution
- Vertexing for $D, K^0_s, \Lambda, ..$
- efficient trigger
- no hardware trigger

partial wave analysis 2×10^7 annihilations/s γ, e, μ, K, p $\sim 1\%$ $c\tau = 123 \mu m$ for D0 at p/m≈2 e, μ, K, D, Λ raw data rate~ TB/s

PANDA – a facility for tagged hyperons

Production Rates (1-2 (fb)⁻¹/y)

Final State	cross section	# reconstr. events/y
Meson resonance + anything	100µb	1010
$\Lambda\overline{\Lambda}$	50µb	1010
ΞΞ	2µb	108
$D\overline{D}$	250nb	107
$J/\psi(\rightarrow e^+e^-, \mu^+\mu^-)$	630nb	109
$\chi_2 \; (\rightarrow J/\psi + \gamma)$	3.7nb	107
$\Lambda_c\overline{\Lambda}_c$	20nb	107
$\Omega_{\mathrm{c}}\overline{\Omega}_{\mathrm{c}}$	0.1nb	105

- Common feature
 - Low multiplicity events
 - Moderate particle energies
 - For pairs: charge symmetric conditions: trigger on one, investigate the other one
 - ▷ re-scattering of tagged hyperons and charmed baryons
 - ▷ (anti)hyperon potentials (see e.g. PLB 669 (2008) 306)

JG The HYP setup at PANDA

Primary target and tracking für pions from weak decay

JGU The HYP setup at PANDA

• Primary, secondary targets, tracking system for π from weak decay

► Ge array

▶ Goal: TDR in 2013

Conclusions

- Hypernuclear program at MAMI has started and will hopefully soon present first physics results
- The construction of FAIR and PANDA has begun. HYP@PANDA is aiming at the required Technical Design Report