Hypernuclear Research at MAMI, GSI and FAIR

Patrick Achenbach U Mainz

Sept. 2012

Hot spots of hypernuclear physics

Hypernuclear Research at MAMI, GSI, and FAIR

Hot spots of hypernuclear physics

Hypernuclear Research at MAMI, GSI, and FAIR

Hot spots of hypernuclear physics

two current activities in strangeness physics

- strangeness electroproduction experiments at MAMI
- double strange hypernuclear experiments at PANDA

Hypernuclear Research at MAMI, GSI, and FAIR

Electroproduction of hypernuclei and hyperfragments

Role of kaon electroproduction for strangeness formation

- Formation mechanisms:
- strangeness exchange
- strangeness production
 - by strong interaction
 - electroproduction
- Spectroscopic methods:
- missing mass spectroscopy
- gamma spectroscopy
- decay spectroscopy

Electroproduction of strangeness is providing a magnifying glass for ... strangeness structure of proton excitations and strange nuclear fragment production

Hypernuclear Research at MAMI, GSI, and FAIR

p(e,e'K) / in the one-photon-exchange approximation

five-fold differential cross section separates in virtual photon flux and virtual photoproduction

$$\frac{d\sigma}{dE'd\Omega_{e'}d\Omega_{K}^{*}} = \prod_{d\alpha_{K}} \frac{d\sigma}{d\Omega_{K}^{*}}$$

$$\frac{\sigma}{d\Omega_{K}^{*}} = \prod_{d\alpha_{K}} \frac{d\sigma}{d\Omega_{K}^{*}}$$

$$\frac{\sigma}{d\Omega_{K}^{*}} = \frac{\sigma_{T} + \epsilon\sigma_{L} + \epsilon\sigma_{TT} \cos 2\phi + \sqrt{2\epsilon(1+\epsilon)}\sigma_{LT} \cos \phi + h\sqrt{2\epsilon(1-\epsilon)}\sigma_{LT'} \sin \phi$$
for polarized electrons with helicity h: $A_{LT'} = \frac{\frac{d\sigma}{d\Omega_{K}^{*}} - \frac{d\sigma}{d\Omega_{K}^{*}}}{\frac{d\sigma}{d\Omega_{K}^{*}} - \frac{d\sigma}{d\Omega_{K}^{*}}} = \frac{\sqrt{2\epsilon(1-\epsilon)}\sigma_{LT'} \sin \phi}{\sigma_{0}}$

for $Q^2 \rightarrow 0$ and unpolarized electrons relation to real photoproduction cross section

Effective Lagrangian models for strangeness production

Saclay-Lyon A: no hadronic f. f., SU(3), crossing symmetry, nucleon (spin 1/2 and 3/2) and hyperon resonances extended Born terms (p, Λ, Σ, K), K*(890), K₁(1270) [T. Mizutani *et al.*, *Phys. Rev. C* 58 (1998) 75]
Kaon-MAID: hadronic f. f., SU(3), no hyperon resonances, only nucleon (spin 1/2 and 3/2) resonances extended Born terms (p, Λ, Σ, K), K*(890), K₁(1270) [T. Mart, C. Bennhold, *Phys. Rev.* C 61 (2000) 012201(R)] *RPR*: Regge model for t-channel moderate no. of s-channel nucleon resonances [T. Corthals, D.G. Ireland, T. Van Cauteren, J. Ryckebusch, *Phys. Rev.* C 75, (2007) 045204]

Comparison of electro- with photoproduction

Measurements at MAMI can confirm or exclude strong Q² dependence

Hypernuclear Research at MAMI, GSI, and FAIR

Predictions for MAMI kinematics

Hypernuclear Research at MAMI, GSI, and FAIR

Measurements at MAMI

Hypernuclear Research at MAMI, GSI, and FAIR

Magnetic spectrometer facility at MAMI

Magnetic focusing spectrometers:

- three high resolution $\Delta p/p \sim 10^{-4}$ spectrometers (SpekA,B,C)
- one short orbit spectrometer (KAOS, since 2008)

Møller polarimeter, neutron detectors, pion spectrometer ...

Kaon identification

Reaction identification

extraction of cross-section using background-corrected kaon-Λ yield, luminosity, acceptance, efficiencies, kaon survival, radiative corrections:

$$Y = L \times \int \left[\Gamma(Q^2, W) \frac{d^2 \sigma}{d\Omega_K^*} \right] A(d^5 V) R(d^5 V) dQ^2 dW d\phi_e d\Omega_K^*$$

Hypernuclear Research at MAMI, GSI, and FAIR

KA cross section at $Q^2 = 0.036$

modern isobar models use small or vanishing longitudinal couplings

Hypernuclear Research at MAMI, GSI, and FAIR

Experiments on hypernuclei and hyperfragments

Hypernuclear production methods

[O. Hashimoto and H. Tamura, Prog. Part. Nucl. Phys. 57, 564 (2006).]

two regimes for hypernuclear and hyperfragment production:

- bound hypernuclear states
- highly excited quasi-free region

First approach: missing mass spectroscopy

experimental requirements:

- → double spectroscopy in a single spectrometer
- → near zero-degree electron detection to maximize flux
- → low-Z targets ^{6,7}Li, ⁹Be, ¹²C

status: experimental setup is prepared and hypernuclear missing mass spectroscopy will be done in Mainz

Second approach: decay-pion spectroscopy

status: first experiments have been performed in Mainz with Be target

Hypernuclear Research at MAMI, GSI, and FAIR

decay pion sepctroscopy

PROTON NUMBER

Accessible hypernuclei

12		¹² C					²⁰ Mg	²¹ Mq	²² Mg	²³ Ma	²⁴ Ma	²⁵ Ma	²⁶ Ma	²⁷ Mg	²⁸ Mg	²⁹ Ma	³⁰ Ma	³¹ Ma	³² Ma	³³ Ma
11		9.0-	get				л с	20 N D	21 No	²² No	23 No	²⁴ No	25 No	²⁶ No	27 No	28 No	²⁹ No	30 No	³¹ No	32 No
		Se	Tar					A Na	A INA	A Na	$^{\Lambda}$ ina	A Na	A Na	A INA	A INA	A INA	ΛINA	A INA	Aina	A INA
10		⁷ Li				$^{17}_{\Lambda}\text{Ne}$	$^{18}_{\Lambda}\text{Ne}$	$^{19}_{\Lambda}\text{Ne}$	$^{20}_{\wedge}\text{Ne}$	$^{21}_{\wedge}\text{Ne}$	$^{22}_{\wedge}\text{Ne}$	$^{23}_{\Lambda}\text{Ne}$	$^{24}_{\Lambda}\text{Ne}$	$^{25}_{\wedge}\text{Ne}$	$^{26}_{\Lambda} Ne$	$^{27}_{\Lambda}\text{Ne}$	$^{28}_{\Lambda}\text{Ne}$	²⁹ ∧Ne	$^{30}_{\Lambda}\text{Ne}$	$^{31}_{\Lambda}\text{Ne}$
9						$^{16}_{\wedge}F$	$^{17}_{\Lambda}F$	^18 ∧ F	$^{19}_{\Lambda}F$	$^{20}_{\wedge}F$	$^{21}_{\Lambda}F$	$^{22}_{\Lambda}F$	$^{23}_{\wedge}F$	$^{24}_{\Lambda}F$	$^{25}_{\Lambda}F$	$^{26}_{\Lambda}F$	$^{27}_{\Lambda}F$	$^{28}_{\Lambda}F$	$^{29}_{\Lambda}F$	^30 F
8				^13 ∧ O	^14 O	¹⁵ ∧O	¹⁶ ∧O	¹⁷ ∧O	¹⁸ ∧O	¹⁹ ರ	²⁰ ∧O	²¹ ∧	²² ∧	^23 ^	^24 ^	²⁵ ∧O	²⁶ ∧O	^27 O		
7				$^{12}_{\Lambda} N$	$^{13}_{\Lambda}{ m N}$	$^{14}_{\wedge} N$	$^{15}_{\Lambda}$ N	$^{16}_{\Lambda} N$	$^{17}_{\Lambda}$ N	$^{18}_{\Lambda} N$	¹⁹ ∧	$^{20}_{\Lambda}$ N	²¹ ∧ n	nissir	ng mass sepctroscopy					
6			$^{10}_{\rm \Lambda}{\rm C}$	^11 ∧C	^12 ∧	¹³ ∧C	^14 C	¹⁵ ∧C	^16 ∧ C	^17 C	^18 C	^19 ∧	²⁰ ∧C	$^{21}_{\Lambda}\text{C}$	<u>n</u> –	×Λ∶	((K ⁻ , <i>π</i>	τ-)	
5			⁹ ∧B	^10 B	¹¹ AB	^12 ∧ B	¹³ ∧B	¹⁴ ∧B	¹⁵ ∧B	^16 ∧ B	^17 B	^18 B					((K_{stop}^{-})	$,\pi^{-})$	
4		⁷ ∧Be	⁸ ∧Be	⁹ ∧Be	^10 Be	¹¹ ABe	$^{12}_{\wedge} \text{Be}$	¹³ ∧Be	$^{14}_{\wedge}\text{Be}$	$^{15}_{\Lambda}\text{Be}$							((π^+, k)	(⁺)	
З		⁶ ∆Li	⁷ ∧Li	⁸ ∧Li	⁹ ∧Li	¹⁰ ⊥i	$^{11}_{\Lambda}\text{Li}$	$^{12}_{\Lambda}\text{Li}$							р-	→ Λ:	((e,e'l	K+)	
2	$^{4}_{\wedge}\text{He}$	⁵∧He	⁶ ∧He	⁷ ∧He	⁸ ∧He	$^9_{\wedge} \text{He}$											((K_{stop}^{-})	$,\pi^{0})$	
1	$^3_{\wedge} H$	$^4_{\wedge} H$	⁵∧H	6∧H	^7	ÅH									$pp \rightarrow n\Lambda: (\pi^-, K^+)$					
0	ΛN																			
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20

NEUTRON NUMBER

Hypernuclear Research at MAMI, GSI, and FAIR

two-body decays of 12 different hypernuclei

break-up mode	Q value (MeV)	π⁻ decay	<i>ρ</i> _π (MeV/c)		
⁹ _A Li	-	⁹ Be + π⁻	121.18		
р + ⁸ _л Не	-13.817	⁸ Li + π ⁻	116.40		
n + ⁸ _A Li	-3.756	⁸ Be + π⁻	124.12		
2p + ⁷ _Λ Η	-40.328	⁷ He + π⁻	135.17		
	(B _∧ =6.1)				
d + ⁷ _A He	-12.568	⁷ Li + π ⁻	114.61		
2n + ⁷ _{\L} Li	-12.218	⁷ Be + π⁻	108.02		
³ He + ⁶ _A H	-29.608	⁶ He + π⁻	133.47		
	(B _∧ =5.1)				
³ H + ⁶ _Λ He	-9.745	⁶ Li + π⁻	108.39		
3n + ⁶ _^ Li	-18.957	⁶ Be + π⁻	100.58		
$\alpha + {}^{5}_{\Lambda}H$	-11.749	⁵ He + π⁻	133.42		
	(B _∧ =4.1)				
$n + \alpha + {}^{4}_{\Lambda}H$	-12.005	⁴ He + π⁻	132.95		
⁶ He + ³ _Λ H	-18.183	³ He + π⁻	114.29		

[table prepared by L. Tang]

Realisation of stopping and decay spectroscopy

- 1500 MeV beam energy
- zero-degree kaon tagging by Kaos
- decay-pion detection with Spectrometer A & C ($\delta p/p < 10^{-4}$)

very preliminary data from Kaos + Spek-C (2011)

predicted pion spectrum for ⁹Be target:

Pion momentum (MeV/c)

Hypernuclear Research at MAMI, GSI, and FAIR

 ${}^{4}_{\Lambda}$ H and ${}^{4}_{\Lambda}$ He emulsion data

Double strange hypernuclear experiments

Production mechanism and detection strategy at PANDA

Instrumentation for hypernuclear physics at PANDA

[shown by F. Iazzi, PANDA Meeting 6 Sept. 11]

Stopping of the Xi particles

3 to 4 target blocks:

- some layers of double sided Si strip detectors
- some layers of absorbers (Be, B and C)

Hypernuclear Research at MAMI, GSI, and FAIR

Prototype developments for the secondary target

frontend electronics developments:

- silicon microstrip detector tests
- optimization of target geometry

adjustment to decay pion tracking and spectroscopy

Hypernuclear Research at MAMI, GSI, and FAIR

Towards a prototype of HPGe Cluster Array

[M. Steinen, U Mainz, I. Kojouharov, GSI]

HPGe developments:

- HPGe detector tests
- electromechanical cooler performance
 - FWHM = 1.83 keV @ 1332 keV

Target integration into the spectrometer

Development of structures:

- beam-pipe design
- automated primary target box
- accessibility

[A. Sanchez Lorente, D. Rodriguez, Shown at PANDA Meeting 6 Sept. 11]

Hypernuclear Research at MAMI, GSI, and FAIR

HPGe array integration into the spectrometer

Geometrical integration concept:

- θ_{lab} < 45°: Ξ -bar, K trigger and PID in PANDA spectrometer
- $\theta_{lab} = 45^{\circ} 90^{\circ}$: Ξ -capture and hypernuclei formation
 - θ_{lab} >90°: γ -detection with HPGe at backward angles

Background suppression by decay pion correlation

Hypernuclear Research at MAMI, GSI, and FAIR

Spectroscopy of AA-hypernuclei

[E. Hiyama, M. Kamimura, T.Motoba, T. Yamada and Y. Yamamoto, Phys. Rev. 66 (2002), 024007] **MeV**

- many excited, particle stable states in double hypernuclei predicted

- level structure reflects levels of core nucleus

Summary

- Hypersystems provide a link between nuclear physics and QCD to study basic properties of strongly interacting systems
- many experimental challenges to realize hypernuclear physics
- current experiments in Germany on hypernuclear physics:

peripheral heavy ion collisions at GSI

charged particle spectroscopy of single hypernuclei at MAMI

γ-spectroscopy of double hypernuclei at PANDA