Hypernuclei: Bridging the gap between Quarks and Stars

Josef Pochodzalla TOURS 2012

"Hypernuclear physics is in a strange position. It is neither fish nor fowl.

High-energy physicists do not look to it for valuable advances in their understanding of the interactions of fundamental particles.

Nuclear physicists also see the field as something apart. Its main relevance for the fundamentals is the information it can provide on the Λ -N and Λ - Λ interactions..."

from a book review by J.D. Jackson, Science (1968).

Hypernuclei... How it all began Many roads lead to Rome **Basic properties** Why bother? **Recent observations**

Hypernuclei... How it all began Many roads lead to Rome **Basic properties** Why bother? **Recent observations**

Nuclear Emulsion

- Cecil Frank Powell (1903-1969)
 - Nobel Prize in Physics 1950
- Multiple layers of emulsion were historically the first means of visualizing charged particle tracks
 - very high positional precision
 - ionisation density (dE/dx)
 - range
 - 3-dimensional view of the interaction
- An emulsion is made, as for photographic film, of a silver salt, (AgBr), embedded in gelatine and spread thinly on a substrate.
 - grain size 0.2-0.5μm (today: 40nm)
 - during development excited grains are reduced to elemental silver
 - density 3g/cm³
- Data acquisition by automated means (e.g. by scanning the film with a CCD camera) is now possible.

Composition of Emulsions

Table 2.6: The composition of the Fuji ET-7C and ET-7D emulsion.

material	weight ratio $(\%)$	mol ratio (%)		
Ι	0.3	0.06		
Ag	45.4	11.2 hop/	volomo	ntc
Br	33.4	11.1 Heav	y eleme	ins
\mathbf{S}	0.2	0.2		
Ο	6.8	11.3		
Ν	3.1	^{5.9} ligh	t olomo	ntc
\mathbf{C}	9.3	20.6 IIGH	t eleme	ints
Н	1.5	40.0		

JGU Emulsion - calibration

GIU How the Hypernuclei Story began

- Marian Danysz, Jerzy Pniewski, et al. Bull. Acad. Pol. Sci. III 1, 42 (1953)
- Marian Danysz, Jerzy Pniewski, Phil. Mag. 44, 348 (1953)

JGU The second event	COMPTES RENDUS				
	HEBDOMADAIRES				
	DES SÉANCES				
	DE L'ACADÉMIE DES SCIENCES,				
	PUBLIÉS,				
	CONFORMÉMENT A UNE DÉCISION DE L'ACADÉMIE				
	EN DATE DU 13 JUILLET 1835,				
PHYSIQUE NUCLÉAIRE. — Emission probable	e d'un fragment nucléaire contenant				
une particule V°. Note de MM. JEAN	CRUSSARD et DANIEL MORELLET,				
présentée par M. Louis Leprince-Ringue	t.				
SÉANCE DU 5 JAN	IVIER 1953. 65				
probable. Un méson π est exclu (scattering trop faible). Un noyau lourd plus rapide est impossible (absence de rayons δ). On ne peut affirmer que la particule s'arrête en A, mais sa vitesse résiduelle y est en tous cas très faible.					

D 2° Il paraît préférable de rapprocher ce phénomène d'un cas observé récemment par Danysz (⁷), dans lequel un fragment lourd ($Z \ge 8$), émis

Interpretation of the Event (1)

- The event Danysz and Pniewski observed shows a nuclear fragment emerging from a cosmic-ray star was stopped within the emulsion in about 10⁻¹²s and subsequently disintegrated with an energy release 140 to 180 MeV
- Since the mean life for the emission of a nucleon from a fragment having an excitation energy around 100 MeV is of the order of 10⁻²⁰s, a decay of an excited ordinary nucleus was excluded.
- Р А В 3 50µm
- The fact, that the fragment was practically at rest at the moment of its disintegration also excluded the possibility of a secondary collision between f and a nucleus in the emulsion.
 - Due to the time-integrating property of emulsion stacks a chance coincidence of two interactions was considered not to be impossible. However Tidman and co-workers discarded this solution because of the extremely small probability of a repeated chance coincidence.

Interpretation of the Event (2)

- Two possible explanations remained still:
 - a subsequent capture of a π- meson or some other heavy meson close to the stopping point B from an atomic orbit.
 - a heavy neutral V⁰₁-particle which has been observed only a few years before in a bound state within a nucleus.
- One of the fragments in the event of Crussard and Morellet turned out to be a pion. As a consequence, a pionic atom as the origin of these connected stars could be discarded. Analysing a two-body decay of a secondary star, Bonetti and coworkers also exclude a capture of a heavier meson as the trigger of the secondary decay leaving only the second possibility.
- As suggested by Goldhaber such fragments were called later hyperfragments

Gajewski et al., Nucl. Phys. B1, 105 (1967)

^{JG} World data from emulsion (1973)

- ▶ M. Juric at al, Nucl. Phys. B52, 1 (1973)
 - 4042 uniquely identified events in 1973

^{JG}U Λ Potential

- $\bullet \quad \mathsf{B}_{\Lambda} = (\mathsf{M}_{core} + \mathsf{M}_{Lambda} \mathsf{M}_{hn})c^2$
- The mass of the hypernucleus M_{hn} can be determined from the sum of the masses m_i of all decay products and their summed kinetic energies T_i

$$M_{hn} = \sum m_i c^2 + \sum T_i$$

JGIU Time Integrating Property of Emulsion

Fig. 1. Chance juxtaposition of unrelated events

The particle, τ , emitted from the star A, passes by chance within a distance of 2μ of the star B. The interpretation depends upon the observation that the two portions of the track τ , on each side of B, are precisely in line; and that they show no significant difference in grain density

Observer Miss P. Dyer

Exposure Jungfraujoch

Hypernuclei... How it all began Many roads lead to Rome **Basic properties** Why bother? **Recent observations**

Nomenclature

- a hypernucleus is specified by
 - the number of neutrons N
 - the number of protons Z
 - the number of hyperons Y

- since we have more than one hyperon (Λ, Ξ⁻, Σ⁻⁺⁰) one usually writes explicitly the symbols of one (or more) hyperon
- examples:

$${}^{10}_{\Lambda\Lambda}Be \rightarrow \begin{cases} Be \rightarrow 4 \text{ protons} \\ \Lambda\Lambda \rightarrow 2 \text{ lambdas} \\ 10 \rightarrow 10\text{-}4\text{-}2\text{=}4\text{ neutrons} \end{cases}$$

$${}^{4}_{\Sigma}He \rightarrow \begin{cases} 1p+2n+1\Sigma^{+} \\ 2p+1n+1\Sigma^{0} \\ 3p+0n+1\Sigma^{-} \end{cases} \text{ indistinguishable}$$

^{JG|U} The twofold way

- Direct production spectroscopy
- Examples
 - strangeness production (π⁺, K⁺), (π⁻, K⁰)
 - strangeness exchange (K⁻, π⁻), (K⁻, π⁰), (K⁻, K⁺)
 - electroproduction (e,e⁻K⁺) , (γ,K⁺)

- Decay spectroscopy
 - γ-decay of excited states
 - π from weak decay
 - charged fragments
- Examples
 - nuclear emulsions
 - heavy ion reactions
 - antiproton induced reactions
 - continuum excitation in (e,e´K+)

Missing mass experiments

JGU Missing Mass Experiments

(E	(Emulsion)																				
	Heavy Ion (HypHI, ALICE,)																				
	10		FIUI					Ne	Z)	²⁰ ∧Ne	^{2/} ∧e	²² / _^ Ne	²³ ∧Ne	²⁴ ∧Ne	²⁵ ∧Ne	²⁶ ∧Ne	²⁷ ∧Ne	²⁸ / _^ Ne	²⁹ Ne	^ ³⁰ Ne	³¹ ∧Ne
	9						¹⁶ / _^ F	$^{17}_{\wedge}{ m F}$	^18 F	¹ /F	²⁰ F	$^{21}_{\Lambda}F$	$^{22}_{\wedge}F$	^23 F	$^{24}_{\Lambda}F$	^25 F	^26 ∧ F	^27 F	²⁸ F	²⁹ ∧F	³⁰ ∧F
L ()	8				¹³ ∧O	¹⁴ ∩	¹⁵ ∧O	¹⁶ ∧O	170	¹⁸ ∧	¹⁹ O	²⁰ ∧O	²¹ ^	²² 0	²³ O	^24 ^	²⁵ ∧O	26 ^O	²⁷ ∧O		
mbe	7				$^{12}_{\Lambda} N$	¹³ ∧N	¹⁴ ∧N	¹⁵ N	¹⁶ ∧N	$^{17}_{\Lambda}N$	¹⁸ ∧N	¹⁹ ∧	$^{20}_{\Lambda}$ N	$^{21}_{\Lambda}$ N	$^{22}_{\wedge}{\sf N}$	$^{23}_{\Lambda}{ m N}$	$^{24}_{\Lambda}$ N				
Nu	6			^10 C	¹¹ ∧C	¹² ∧C	13 /	¹⁴ ∧C	¹⁵ ∧C	¹⁶ ∧C	^17 C	¹⁸ ∧C	¹⁹ ∧C	$^{20}_{\Lambda}\text{C}$	$^{21}_{\Lambda}\text{C}$	<u>n</u> -	$\rightarrow \Lambda$:		(K ⁻7	τ ⁻)	
ton	5			⁹ ∧B	¹⁰ ∧B	11 B	¹² ∧B	$^{13}_{\Lambda}\text{B}$	¹⁴ ∧B	¹⁵ ∧B	^16 ∧ B	$^{17}_{\Lambda}\text{B}$	^18 B				/		(K^{-}_{stop})	$,\pi^{-})$	
Pro	4		⁷ ∧Be	åBe	°,Be	¹⁰ Be	$^{11}_{\Lambda}\text{Be}$	$^{12}_{\Lambda}\text{Be}$	¹³ ∧Be	$^{14}_{\wedge}\text{Be}$	^15 Be								(π^+, k)	(*)	
	3		⁶ ∧Li	7.LT	⁸ Li	°∆Li	¹⁰ ⊥i	$^{11}_{\wedge}$ Li	^12 Li							р -	$\rightarrow \Lambda$:		(e,e'ł	K ⁺)	
	2	4∧He	⁵ He	⁶ ∧He	⁷ ∧He	å∧He	⁹ ∧He												(K_{stop}^{-})	$,\pi^{0})$	
	1	³ H	₄H													pp	$\rightarrow n$	Λ:	(<i>π</i> ⁻, K	(+)	
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20

Neutron Number

Single Particle States in Nuclei

- H. Hotchi et al., PRC 64, 044302 (2001)
- KEK, Superconduction Kaon Spectromter (SKS)

-25

-20

-15

-10

 $-B_{\Lambda}$ (MeV)

-5

0

5

Λ in nuclei – to be or not to be?

JGU Spin-Orbit Force

- in normal nuclei: strong spin-orbit interaction (~5MeV for light nuclei) needed to explain shell structure
 - Haxel, Jensen, Suess and Goeppert-Mayer (1949)
- origin still unclear
 - see e.g. N. Kaiser, Nucl. Phys A709 (2002) 251

JGU J-Lab Experiments (e,e'K+)

Spin-Orbit Force in Hypernuclei

- γ ray from ${}^{9}_{\Lambda}$ Be created by 9 Be(K⁻, π^{-}) reaction
- $\Delta E(5/2^+, 3/2^+) \Rightarrow \Lambda N$ spin-orbit force, LS (core structure: 2α rotating with L=2)

JGU International Hypernuclear Network

High Resolution γ-Spectroscopy at KEK

Past and Presence of Hypernuclei

Hypernuclei... How it all began Many roads lead to Rome **Basic properties** Why bother? **Recent observations**

JGIU Weak Decay of A Hypernuclei

Mesonic vs. Non-mesonic Decay

$\Delta I = 1/2$ rule for $\Delta S = 1$ weak transitions \Box

▶ standard theory: no neutral current for flavor changing transition $s \rightarrow u + W^ W^- \rightarrow d + \overline{u}$

$$\Delta I = \frac{1}{2} \qquad \left\langle \frac{1}{2} \frac{1}{2} 1 - 1 \left| \frac{1}{2} - \frac{1}{2} \right\rangle = \sqrt{\frac{2}{3}} \\ \Delta I = \frac{3}{2} \qquad \left\langle \frac{1}{2} \frac{1}{2} 1 - 1 \left| \frac{3}{2} - \frac{1}{2} \right\rangle = \sqrt{\frac{1}{3}} \right\rangle \Rightarrow \text{ ratio} = 2:1$$

 $\land \rightarrow \mathsf{N} + \pi:$

$$\Gamma(\Lambda \to \rho + \pi^{-}) \colon \Gamma(\Lambda \to n + \pi^{0}) = \begin{cases} 2 : 1 & \text{for } \Delta I = 1/2 \\ 1 : 2 & \text{for } \Delta I = 3/2 \end{cases} \text{ dominance}$$

Experiment:

$$\Gamma(\Lambda \rightarrow \rho + \pi^{-}) \colon \Gamma(\Lambda \rightarrow n + \pi^{0}) = 0.639 \colon 0.358 = 1.78$$

Lifetime of Hypernuclei JGU

Light hypernuclei

- Decay in flight (\rightarrow HYPHI, STAR)
- Direct time measurements ►

Kulessa et al., J. Phys. G 28 (2002) 1715

U target

Hypernuclei... How it all began Many roads lead to Rome **Basic properties** Why bother? **Recent observations**

^{JG|U} Bridging the gap between Quarks and Stars

Comprehensive description of Nuclei in terms of basic principles (QCD)...

...to allow quantitative predictions in regions not accessible by experiments

NEUTRON STAR MODELS

A. G. W. CAMERON Atomic Energy of Canada Limited, Chalk River, Ontario, Canada Received June 17, 1959

Another reason why the writer has not taken into account complications inherent in using a relativistic equation of state is that no such things as pure neutron stars can be expected to exist. The neutrons must always be contaminated with some protons and sometimes with other kinds of nucleons (hyperons or heavy mesons).

Alastair G.W. Cameron, Astrophysical Journal, vol. 130, p.884 (1959)

Rather than being a surprise to find hyperons it would stretch our understanding of fundamental strong and weak interaction processes to breaking point if they were not to appear. It is certainly inconceivable that a nucleon-only EoS could be realistic at such large densities.

J. R. Stone, P. A. M. Guichon, A. W. Thomas, arXiv:1012.2919v1

JGU Hyperons in neutron stars (2008)

Haris Djapo, Bern-Jochen Schäfer and Jochen Wambach arXiv:0811.2939v1 [nucl-th] 18 Nov 2008

In conclusion, irrespective of the YN interactions, incompressibility and symmetry parameter used, hyperons will appear in dense nuclear matter at densities around $\sim 2\rho_0$. This immediately leads to a softening of the EoS which in turn results in a smaller maximum mass of a neutron star.

With the prediction of a low onset of hyperon appearance it becomes practically impossible to ignore strangeness when considering neutron stars. Even though the prediction for the maximum masses of neutron stars are too low, the appearance of hyperons in neutron stars is necessary and any approach to dense matter must address this issue.

JGU Appereance of Hyperons

- hyperons appear, when its in-medium energy equals its chemical potential
- Input: Baryons in chemical Equilibrium, conservation laws, interaction

N. K. Glendenning, Phys. Rev. C 64, 025801 (2001)

- beyond $2\rho_0$ hyperons may play a significant role in neutron stars
- in the core hyperons may even be more abundant than neutrons

Fig. 2. Models for the equation of state (pressure versus energy density) of neutron star matter [11]. The notation is as follows: RMF=relativistic mean-field model; DD-RBHF=density dependent relativistic Brueckner-Hartree-Fock model; n=neutrons; p=protons; H=hyperons, $K=K^{-}[u,\bar{s}]$ meson condensate; Q=u,d,s quarks; H-matter=H-dibaryon condensate.

^{JG} 3-body Forces in Neutron Stars

► K. Hebeler et al., PRL 105, 161102 (2010)

Masses of neutron stars

D. J. Nice, I. H. Stairs and L. E. Kasian, AIP Conference Proceedings 983, 453 (2008). $M(J0751) = 1.26 \pm 0.14 M_{\odot}$

JGU Masses of Neutron Stars

JGU Masses of Neutron Stars

EOS predicted within Quark-Meson-Coupling model

J. R. Stone, P. A. M. Guichon, A. W. Thomas, arXiv: 1012.2919v1

JGU Interpolation vs. extrapolation

JGIU Nuclear Forces from Lattice QCD

S. Aoki, T. Hatsuda and N. Ishii, Prog. Theor. Phys. 123 (2010) 89

Charge Symmetry Breaking

- Protons and neutrons are the two isospin states of the nucleon
- Protons and neutrons have different masses
- Coulomb interaction would make p (uud) heavier than n (udd)
- Mass difference between up and down quarks is the only strong-interaction effect that breaks charge symmetry.

- Strong CSB in S=0 sector makes neutrons decay into protons and is therefore decisive for the structure of our universe
- Reminder: one has to distinguish between
 - Isospin invariance: $[H_{strong}, T] = 0$
 - Charge independence
 - Charge symmetry: $[H_{strong}, e^{i\pi T_2}] = 0 \iff [H_{strong}, e^{i\pi T_2}] = 0$
 - \triangleright Example: π^0 - π^0 and π^0 - π^+ scattering
 - Hamiltonian isospin invariant
 - Clebsch Gordan coefficients are different
 - \Rightarrow interaction is charge dependent

$$\begin{array}{c} |u\rangle \xrightarrow{CS} - |d\rangle \\ |d\rangle \xrightarrow{CS} + |u\rangle \end{array}$$

 $\left|10\right\rangle \left|10\right\rangle \neq \left|10\right\rangle \left|11\right\rangle$

JGIU Charge Symmetry Breaking in Mirror Nuclei

Coulomb interaction and modifications of nuclear structure due to Coulomb interaction may mask the effect of the strong CSB!

Effective Field Theories are getting mature

- EFT for relevant degrees of freedom based on symmetries of QCD
- Long range pion dynamics treated explicitly
- Short-range physics absorbed in contact terms
- Low energy constants fitted to experimental data
- Hierarchy of *consistent* NN, 3N, 4N,... interactions

CSB and EFT

JGU

Evgeny Epelbauma, Hermann Krebs, Dean Lee, Ulf-G. Meißner

JGU Strange Mirror Nuclei

$\Lambda\Lambda$ Nuclei as Femto-Laboratory

► *H*-Particle R.L. Jaffe (1977)

H

T. Sakai, K. Shimizu, K. Yazaki Prog.Theor.Phys.Suppl. 137 (2000) 121-145

Bound or not bound?

- No experimental evidence yet in production experiments
- Observation of weak decay of double hypernuclei seems to contradict the existence of an H-particle below 2m_A
- but
 - H-particle may be rather compact: R~0.5fm
 - F.G. Scholtz et al. (1993)
 - and formation probability may be therefore reduced
 - D.E. Kahana & S.H. Kahana (1999)
 - G.R. Farrar et al. (2003)

JGU H-Particle on the Lattice

- Recent lattice calculations predict a slightly unbound H with B_H=13±14MeV
- That this is so close to the threshold will undoubtedly spur investigations into the consequences for doubly strange hypernuclei as well as the equation of state of dense matter.

How can we produce the H?

 $\tau \sim 10^{-23} s$

Hypernuclei as doorway state $\tau \sim 10^{-10}$ s

JGIU H-dibaryon in nuclei

- $\Lambda\Lambda$ - Ξ N-($\Sigma\Sigma$) coupling important (Δ E=22-28MeV)
- Consequences
 - H-particle and "ΛΛ" state will mix
 - *H*-particle in a nucleus \neq free *H*

T. Yamada, Phys. Rev. C62, 034319-1 (2000)

Hypernuclei... How it all began Many roads lead to Rome **Basic properties** Why bother? **Recent observations**

Individual Strengths

Experiment @Facility	Experimental tool & status	Methods & topics
JPARC	low mometum meson beams (π,K) setup ready, K beam intensity still limited	 Λ hypernuclei excited states (Δm~few keV) by γ-spectroscopy Ξ-hypernuclei by missing mass ground state masses of light double hypernuclei by hybrid emulsion (Δm~ few 10keV)
JLAB	electro production until 20xx upgrade of CEBAF	 Precission ground state masses by π⁻- spectroscopy (after 2012) medium-heavy Λ-hypernuclei (after 2012)
A1@MAMI	electro production	 Precission ground state masses by π⁻-spectroscopy (Δm~10keV) Λ-wave function by K angular distribution Σ hyperon in light nuclei
HypHI@GSI&FAIR	projectile fragmentation 2AGeV - 15AGeV two experiments performed, data analysis ongoing	 ground state masses (∆m~few MeV) lifetimes exotic hypernuclei by radioactive beams
FOPI@GSI STAR@AGS ALICE@LHC	(symmetric) heavy ion collisions Signal seen by FOPI and STAR, analysis ongoing; ALICE started	 antihypernuclei and hypernuclei yields and ground state masses (∆m~few MeV) of S=-2 nuclei lifetimes
PANDA@FAIR	antiproton beam in design and R&D stage; run after 2017	 level scheme of double ΛΛ hypernuclei by γ- spectroscopy (Δm<10keV)

