The target system for the hypernuclear experiment at PANDA

Sebastian Bleser¹, Felice Iazzi²,
 Marta Martínez Rojo¹, Josef Pochodzalla³, Torben Rathmann³,
 Alicia Sanchez Lorente¹ and Marcell Steinen¹

¹Helmholtz-Institut Mainz ²Politecnico di Torino and INFN, Sez. di Torino, Italy ³Institut für Kernphysik, Johannes Gutenberg-Universität, Mainz

26th Indian-Summer School & SPHERE School of Physics, Prague, September 3, 2014

In gemeinsamer Trägerschaft des GSI Helmholtzzentrums für Schwerionenforschung, Darmstadt und der Johannes Gutenberg-Universität Mainz

Outline

- The PANDA experiment
- The primary target
- The secondary target
- Outlook

Motivation

FAIR (Facility for Antiproton and Ion Research) at GSI in Darmstadt momenta of antiprotons in HESR 1.5 – 15 GeV/c SIS100/300 p-LINAC SIS 18 UNILAC CBM Produktion HESR seltener isotope PANDA Super-FRS Produktion. 100 m von Antiprotonen Plasmaphysik Atomphysik RESR FLAIR. existierende Anlage NESR neue Anlage Experimente

Motivation

PANDA (Anti-Proton Annihilations at Darmstadt)

modular detector in the HESR of FAIR **Micro Vertex Detector GEM** Detectors Shashlyk Calorimeter Straw Tube **Forward Tracking System** Tracker Muon Range System Targetsystem Solenoid **Barrel TOF** setup for hypernuclear experiment Straw Tube Tracker **TOF Wall** Beampipe Dipole n Disc DIRC RICH Beampipe **Muon Detection EM** Calorimeter **Barrel DIRC** Primary and secondary Target

Germanium Detector Array

Motivation

Production and detection of $\Lambda\text{-}\Lambda\text{-}hypernuclei$ at $\overline{\text{PANDA}}$

Primary target (C-12):

• formation of Ξ^- -particles in \overline{p} + ${}^{12}C$ – reactions

Secondary target (Be, B, C):

- deceleration of Ξ[−]-particles
- integration in the atomic shell of absorber atoms
- capture of Ξ^- by nucleus
- formation of Λ - Λ -hypernuclei by conversion: $\Xi^- p \rightarrow \Lambda \Lambda$
- detection of weak decay products (pions)

Germanium detector array:

• γ -spectroscopy of Λ - Λ -hypernuclei with Ge detectors \rightarrow *next talk by Marcell Steinen*

The primary target

Task of the primary target: production of slow Ξ^-

Requirements:

- minimal hadronic background in backward direction
- constant luminosity of $\overline{p}\mbox{-beam}$
- \Rightarrow ¹²C micro-wire target with \checkmark thickness 3 µm, width 100 µm

Requirements for positioning stage:

- functionality in a field of 2 T
- working in an ultra high vacuum of 10⁻⁹ mbar
- radiation hardness
- total height limited to 20 mm

Piezo motor tests

PiezoWave Linear 0.1 N

Specifications:

- stroke max: 8 mm
- size: 14.0 mm x 7.2 mm x 4.4 mm

Experimental tests:

- average step size:
 0.96 µm → precise enough
- Measurement of forces with weights: dynamic force = 0.14 N → sufficient holding force = 0.88 N
- proper running in vacuum proved for some weeks
- not influenced by a magnetic field of 1.3 T
- no radiation damage discovered in beam test at COSY in Jülich

Nanomotion HR1-1-U-0

Design of the target system

very short range of Ξ^- : $c\tau$ = 4.914 cm \Rightarrow compact structure essential

arrangement of DSSD-absorber-assemblies directly around the target chamber and beampipe \rightarrow minimization of beampipe diameter

minimization of material budget \rightarrow reduction of thickness

Target chamber studies

Stability tests in vacuum:

alloy AlMg3, 100 μm

Brass, 200 µm

Target chamber measurements

Design of the secondary target

Stopping of **E**⁻

$\Xi^{\scriptscriptstyle -}$ out of GiBUU simulations with \overline{p} on ^{12}C at 2.9 GeV/c

momentum distribution of $\Xi^$ and results after stopping in the secondary target

→ 0.204% of the generated Ξ^- (≈ 1 minute of PANDA) are stopped in beryllium

Simulation of Ξ^- with a created generator of parametrized GiBUU events

momentum distribution of stopped Ξ^- at the entrance of the secondary target

→ only Ξ^- in the momentum range from about 0.1 to 0.5 GeV/c that means θ from 100° to 180° can be stopped

Simulation of Ξ^- with a created generator of parametrized GiBUU events in a theta range from 70° to 180°

Simulation of Ξ^- with a created generator of parametrized GiBUU events in a theta range from 70° to 180°

optimization studies:

- corners filled with absorber material
- exchange of the starting layer
- increased absorber thickness

 \Rightarrow absorber material in the corners

Simulation of Ξ^- with a created generator of parametrized GiBUU events in a theta range from 70° to 180°

Pion tracking

Concept of the pion tracking:

- extract the coordinates of the Ξ⁻ stopping points
- placing ${}^{11}_{\Lambda\Lambda}$ Be double hypernuclei
- phase space decay by Geant4
- ${}^{11}_{\Lambda\Lambda}Be \rightarrow {}^{11}_{\Lambda}B + \pi^{-}_{1}$ ${}^{11}_{\Lambda}B \rightarrow {}^{11}C + \pi^{-}_{2}$
- tracking of π_1^- and π_2^-

expected momentum distribution:

Outlook

- beamtest of the filament target
- construction of a positioning stage
- study of the arrangement and thickness of the layers in case of the stopping of Ξ^- and the pion tracking
- ongoing GiBUU simulations