Solving puzzles in hypernuclear physics at MAMI and PANDA

Patrick Achenbach

U Mainz

October 2016

Light A hypernuclei and the puzzle of charge symmetry breaking

The world as we know it relies on charge symmetry breaking

Charge independence: strong force independent of nucleon isospin state $(F_{p-p}=F_{n-n}=F_{p-n})$

Charge symmetry: strong force independent of nucleon isospin exchange $(F_{p-p} = F_{n-n})$

Coulomb interactions are rather ineffective in breaking the isospin symmetries in nuclei

If charge symmetry would be satisfied in nuclear two-body force...

- ... mirror hypernuclei would have (nearly) identical mass
- ... protons would be heavier than neutrons because of electrostatic repulsion
- ... no free protons would have survived the primordial nucleosynthesis
- ... the Sun and the stars would have no slow-burning fuel

Charge symmetry in light hypernuclei

Opportunity to study strong force symmetries with Λ as neutral probe

A hyperon has no isospin and no charge \rightarrow A binding in mirror hypernuclei directly tests charge symmetry

$$F_{\Lambda-p} = F_{\Lambda-n} \to \mathsf{B}_{\Lambda}({}_{\Lambda}{}^{\mathsf{A}}\mathsf{Z}) = \mathsf{B}_{\Lambda}({}_{\Lambda}{}^{\mathsf{A}}\mathsf{Z}+1)$$

Large charge symmetry breaking in A = 4

 ${}^{4}_{\Lambda}H - {}^{4}_{\Lambda}He$ binding energy difference exceptionally large > 300 keV

[M. Juric et al. NP B52 (1973)]

- Charge symmetry breaking 5 times larger than in ³H ³He system
- Ap interaction stronger than An interaction

Observations not consistently reproduced by theory before 2015

[A. Nogga, NP A 914,140 (2013)]

The A = 4 CSB puzzle

Calculation	Interaction	$B_{\Lambda}(^{4}{}_{\Lambda}H_{gs})$	$B_{\Lambda}(^{4}_{\Lambda}He_{gs})$	ΔB_{\wedge} (⁴ _{\lambda} He- ⁴ _{\lambda} H)
A. Nogga, H. Kamada and W. Gloeckle, PRL 88, 172501 (2002)	SC97e	1.47	1.54	0.07
	SC89	2.14	1.80	0.34
H. Nemura. Y. Akaishi and Y. Suzuki, PRL 89, 142504 (2002)	SC97d	1.67	1.62	-0.05
	SC97e	2.06	2.02	-0.04
	SC97f	2.16	2.11	-0.05
	SC89	2.55	2.47	-0.08
E. Hiyama, M. Kamimura, T. Motoba, T. Yamada and Y. Yama PRC 65, 011301 (R) (2001)	AV8	2.33	2.28	-0.05
world data average		2.04±0.04	2.39±0.03	0.35±0.06

- calculations since decades fail to explain large ΔB_{Λ}
- coupled channel calculation using SC89 fails to bind excited state

World data on $A \leq 10$ systems

- clearest signature of charge symmetry breaking in A = 4 system
- weak indications of charge symmetry breaking in $A \neq 4$ systems

Emulsion results on 4 H and 4 He

• 155 events for hyperhydrogen, 279 events for hyperhelium

Hyperfragment decay-pion spectroscopy with electron beams

Hypernuclear experiments at MAMI done in Collaboration with Tohoku University (S.N.N. Nakamura *et al.*)

Hypernuclear studies at MAMI and PANDA

Oct. 2016 P Achenbach, U Mainz

World data on A = 4 system

MAMI 2012 experiment Λ binding energy of Λ^4 H: B $_{\Lambda}$ = 2.12 ± 0.01 (stat.) ± 0.09 (syst.) MeV

A. Esser et al. (A1 Collaboration), PRL 114, 232501 (2015)

Systematic studies of the decay-pion line

• consistent result for $B_{\Lambda}({}^{4}_{\Lambda}H)$ from MAMI 2012 and MAMI 2014 independent measurement in two specs, two targets, two beam-times

Hypernuclear studies at MAMI and PANDA

Oct. 2016 P Achenbach, U Mainz

World data on ${}^{4}_{\Lambda}$ H mass

outer error bars correlated from calibration

The A = 4 level schemes (before 2015)

The A = 4 level schemes (as of 2015)

Current knowledge on CSB in the A = 4 system

Consistent experimental data with latest theory

latest chiral effective models with central force $\Lambda N-\Sigma N$ coupling \rightarrow mixing of *I*=0 and *I*=1 hyperons leads to long-range pion exchanges

based on OBE Nijmegen NSC97 model YN potential

$$\Delta B_{\Lambda} (0+ \text{ gr. st.}) = +226/266 \text{ keV}$$

$$\Delta B_{\Lambda} (1+ \text{ ex. st.}) = +30/39 \text{ keV}$$
[A. Gal, PLB 744, 352 (2015)]

based on LO chiral EFT Bonn-Jülich YN potential $\Delta B_{\Lambda} (0+ \text{ gr. st.}) = +180 \pm 130 \text{ keV}$ $\Delta B_{\Lambda} (1+ \text{ ex. st.}) = -200 \pm 30 \text{ keV}$ [D. Gazda & A. Gal, PRL 116, 122501 (2016)] [D. Gazda & A. Gal, NPA 954, 161 (2016)]

Errors on binding energy by method

- goal of calibrations is syst. error comparable to stat. error < 20 keV
- decay-pion spectroscopy will be the most precise method of all

Reducing the systematic error

MAMI energy measurement with O(10⁻⁴) precision

1) by a dipole used as beam-line spectrometer:

Hypernuclear studies at MAMI and PANDA

Oct. 2016 P Achenbach, U Mainz The lightest Λ hypernucleus and the puzzle of lifetime

The quest for ³_AH

only about 200 analyzed events from emulsion:

these data (from 2 decay modes): only source of binding energy information

$${}^{3}_{\Lambda}H^{decay}_{\to\to} \pi^{-} + {}^{3}He: B = 0.07 \pm 0.06 \text{ MeV} \\ {}^{3}_{\Lambda}H^{decay}_{\to\to} \pi^{-} + {}^{1}H + {}^{2}H: B = 0.12 \pm 0.08 \text{ MeV}$$
 0.05 MeV difference
Total: B = 0.13 ± 0.05 MeV [M. Juric et al. NP B52 (1973)]

³_AH lifetime

Small Λ binding energy implies extended wave function \rightarrow hypernucleus lifetime should be comparable to free Λ lifetime

all calculations of lifetime predict no more than 10% deviation

Values from heavy ion experiments are surprisingly small

Li: an ideal target for ${}^3_{\Lambda}$ H production

Statistical decay calculations _

 D_C and P(x) in units of 10^{-4} , x in units of mm

Double Λ hypernuclei and the puzzle of $\Lambda\Lambda$ interaction

S=-2 systems

Production mechanism and detection strategy at PANDA

Hypernuclear studies at MAMI and PANDA

Oct. 2016 P Achenbach, U Mainz

Instrumentation for hypernuclear physics at PANDA

Hypernuclear studies at MAMI and PANDA

Oct. 2016 P Achenbach. U Mainz

Hypernuclear studies at MAMI and PANDA

Oct. 2016 P Achenbach, U Mainz

New precision era in hypernuclear physics

- 1. High-resolution pion spectroscopy has replaced emulsion technique
- 2. High-purity germanium spectroscopy has replaced NaJ detectors

Hypernuclear physics at MAMI and PANDA is complementary to J-PARC activities