

hyperatoms

the states

(anti)hyperon scattering

strangeness nuclear physics

> nuclear structure

EOS from Standa Model

compressed hadronic matter

CAN IN THE REAL PROPERTY IN

from Standard Model +GRAVITY 2nd EMMI Workshop Anti-matter, hyper-matter and exotica production at the LHC Turin November 2017

Strangeness Nuclear Physics with PANDA

Josef Pochodzalla

JGU Mainz & Helmholtz-Institut Mainz

CSB in A=4 Hypernuclei 2016

A1 Collaboration, Nuclear Physics A 954(2016) 149

- 2015: strong, spin-dependent charge symmetry breaking (CSB) in A = 4 mirror hypernuclei !
- Compatible with *ab initio* calculations

Success of novel Techniques

= Strangeness in cold nuclei

hyperatoms

hypernuclei

(anti)hyperon scattering

Why CSB in Hypernuclei so large?

> Mass difference between Σ and Λ in single hypernuclei is small Thomas Rijken

hyperon coupling important phenomenon in hypernuclei

H. Takahashi et al., PRL 87, 212502-1 (2001)

B Y	$\frac{X}{\overline{Y}} \overline{X} = \frac{B}{\overline{Y}} X$	·	#6.	\#5
Nucleus	$\Delta B_{\Lambda\Lambda}(^{A}_{\Lambda\Lambda}Z)$ (MeV)	Experiment	Reference	Remark
¹⁰ _{AA} Be	4.3 ± 0.4	Danysz (1963)	[77, 78] [74]	K^- + nuclear emulsion; $\Delta B_{\Lambda\Lambda}$ consistent with NAGARA if decay to $^9_{\Lambda}$ Be [*] at E _x ≈ 3 MeV [81, 11]
⁶ _{ЛЛ} Не	4.7 ± 0.6	Prowse (1966)	[198]	K ⁻ + nuclear emulsion only schematic drawing
¹⁰ _{AA} Be	-4.9 ± 0.7	KEK-E176 (1991)	[20, 245]	hybrid-emulsion
or $^{13}_{\Lambda\Lambda}$ B	0.6 ± 0.8	Aoki event	[88, 24, 172]	$(K^{-},K^{+})\Xi^{-}_{stopped}$
⁶ _{ЛЛ} Не	0.67 ± 0.17	KEK-E373 (2001) NAGARA event	[226, 172] [11]	hybrid emulsion
¹⁰ _{AA} Be	-1.65 ± 0.15	KEK-E373 (2001)	[10, 172]	$B_{\Lambda\Lambda}$ consistent with
or ${}^{10}_{\Lambda\Lambda}$ Be*		DEMACHIYANAGI event	[11]	Danysz if $E_x \approx 2.8 \text{ MeV}$
⁶ _{AA} He	3.77 ± 1.71	KEK-E373 (2003)	[227, 11]	
or $^{11}_{\Lambda\Lambda}$ Be*	3.95 ± 3.00 or 4.85 ± 2.63	MIKAGE event	(48) - 1-2 /	
¹² _{AA} Be	2.00 ± 1.21	KEK-E373 (2010)	[172, 11]	
or $^{11}_{\Lambda\Lambda}$ Be*	2.61 ± 1.34	HIDA event		

- Beam exposure has successfully been performed for all emulsion stacks in 2016/2017
- auto-scanning has started
- Iimitation: only ground state masses for AA-hypernuclei can be determined

The E906 experiment

⁹Be(K⁻,K⁺)π-π-

momentum of the pion with lower momentum

^{JG} E906 – What is it?

VOLUME 87, NUMBER 13

PHYSICAL REVIEW LETTERS

24 September 2001

He

Production of ${}_{\Lambda\Lambda}{}^4$ H Hypernuclei

J. K. Ahn,¹³ S. Ajimura,¹⁰ H. Akikawa,⁷ B. Bassalleck,⁹ A. Berdoz,² D. Carman,² R. E. Chrien,¹ C. A. Davis,^{8,14} P. Euge S. H. $A^{+}_{\Lambda\Lambda}$ $H \rightarrow \pi^{-}_{114MeV/c}$ $+^{4}_{\Lambda}$ $He \rightarrow \pi^{-}_{114MeV/c}$ $+ \pi^{-}_{97MeV/c}$ $+^{4}_{\Lambda}$ $H^{-}_{Landry,^8}$ M. May, C. Weyel, Z. Wezian, S. Winann, T. Wiyaen, H. Nagae, S. Waxano, M. Cota, R. Paschke,² P. Pile ¹ M. Prokhabatilov ⁶ B. P. Ouinn ² V. Pasin ⁶ A. Pusek ¹ H. Schmitt ³ P. A. Schumacher ² M. Sakimoto ⁵

PHYSICAL REVIEW C 66, 014003 (2002)

Pionic weak decay of the lightest double- Λ hypernucleus ${}^4_{\Lambda\Lambda}H$

Izumi Kumagai-Fuse and Shigeto Okabe Center for Information and Multimedia Studies, Hokkaido University, Sapporo 060-0811, Japan (Received 31 December 2001; published 22 July 2002)

PHYSICAL REVIEW C 76, 064308 (2007)

Reevaluation of the reported observation of the ${}_{\Lambda\Lambda}{}^{4}$ **H hypernucleus**

S. D. Randeniya and E. V. Hungerford Department of Physics, University of Houston, Houston, Texas 77204, USA (Received 11 June 2007; published 10 December 2007)

p (MeV/c)

-30

¹⁰Li, ΔB_M=1MeV

"Lias

JGU PANDA – a Factory for strange and charmed YY-Pairs

Production Rates (1-2 (fb) ⁻¹ /y)						
Final State	cross section	<u># reconstr. events/y</u>				
Meson resonance + anything	100µb	1010				
$\Lambda\overline{\Lambda}$	50µb	1010				
$\Xi\overline{\Xi}(\to_{\Lambda\Lambda}A)$	2µb	$10^8 (10^5)$				
$D\overline{D}$	250nb	107				
$J/\psi(\rightarrow e^+e^-,\mu^+\mu^-)$	630nb	109				
$\chi_2 \; (\rightarrow J/\psi \! + \! \gamma)$	3.7nb	107				
$\Lambda_c\overline{\Lambda}_c$	20nb	107				
$\Omega_{\alpha}\overline{\Omega}_{\alpha}$	0.1nb	105				

Exploring (anti-)hadron interactions

Antihadrons in atomic nuclei

- Nuclear potential of antihadrons and hadrons
- Search for Antilambda bound states
- Exploring the neutron skin of nuclei
- K*/K̄* in nuclei

JP PLB **669**, 306 (2008) Sanchez *et al.*, PLB 749, 421 (2015)

High resolution γ -Spectroscopy

- Atomic transitions in heavy hyperonic (S=2,3) atoms
- Excited particle stable state spectroscop of light $\Lambda\Lambda$ hypernuclei

^{JG|U} S=-2 systems

Ξ capture and $\Xi^{-}p \rightarrow \Lambda \implies \wedge \wedge$ hypernuclei J-PARC, FAIR

 $\Lambda\Lambda$ coalescence

missing mass (K⁻,K⁺) reactions $\Rightarrow \Xi$ bound state

- Ξ capture
- final state interaction

- \Rightarrow Ξ atoms $\Rightarrow \Lambda\Lambda, \Xi p...$
- **J-PARC** J-PARC, FAIR ΗI

JGU HESR with PANDA and Electron Cool

- High resolution mode
 - e^{-} cooling $1.5 \le p \le 8.9$ GeV/c
 - 10¹⁰ antiprotons stored
 - Luminosity up to 2.10³¹ cm⁻²s⁻¹
 - $\Delta p/p \le 4 \cdot 10^{-5}$

- High luminosity mode
 - Stochastic cooling $p \ge 3.8 \text{ GeV/c}$
 - 10¹¹ antiprotons stored
 - Luminosity up to 2.10³² cm⁻²s⁻¹
 - $\Delta p/p \leq 2 \cdot 10^{-4}$

JGU The PANDA Detector

^{JG|U} Strange Systems at PANDA

weak pionic decay

Primary Target

> Task: maximize slow Ξ^- production

Target material: C filament 5μm

- production cross section
- slow down process
- beam losses...
- ultra high vacuum
- magnetic field
- radiation hardness e.g. passive position control

^{JG}^{JG} Ξ⁻ properties determine setup

E⁻ mean life 0.164 nsec

- MINIMIZEMINIMIZE distance production
 & capture
- initial momentum 100-500 MeV/c
- thickness od secondary target few mm

Secondary target

Task: stopping of Ξ^- and tracking of 2 π^- from weak decay of double hypernuclei

^{JGIV} Simulation within PANDA_ROOT...

Example: secondary ¹²C target (~2 weeks)

Task 5: A Potential in Nuclei

JP PLB **669**, 306 (2008) Sanchez *et al.*, PLB 749, 421 (2015)

Scan of $\overline{\Lambda}$ Potential with GiBUU

- ▶ U(A) = -449MeV, -225MeV, -112MeV, 0MeV
- All other potentials unchanged

JGU

Λ

PLB 749, 421 (2015)

 $\alpha_{L} = \frac{p_{L}(\Lambda) - p_{L}(\overline{\Lambda})}{p_{L}(\Lambda) + p_{L}(\overline{\Lambda})}$

Λ

 $\overline{\Lambda}$

HIM

Other |s|=1 channels @ 1000MeV

 $\begin{array}{l} \triangleright \quad \bar{p} + p \rightarrow \overline{\Lambda} + \Lambda \\ \rho \quad \bar{p} + n \rightarrow \overline{\Lambda} + \Sigma^{-} \\ \end{array} \begin{array}{l} \bar{p} + p \rightarrow \overline{\Sigma}^{0} + \Lambda \\ \bar{p} + n \rightarrow \overline{\Lambda} + \Sigma^{-} \\ \end{array} \begin{array}{l} \bar{p} + n \rightarrow \overline{\Sigma}^{+} + \Lambda \\ (\times 1/100) \\ \end{array}$

BUU predictions

Table I. Production yield of $\overline{\Lambda}\Lambda$ and $\overline{\Lambda}\Sigma^-$ -pairs in \overline{p} -Ne interactions. The last line gives the double-ratio for $\overline{\Lambda}\Sigma^-$ and $\overline{\Lambda}\Lambda$ production.

Target	$\overline{\Lambda}\Sigma^{-}$	$\overline{\Lambda}\Lambda$
²⁰ Ne	3667	18808
²² Ne	4516	15733
ratio 22 Ne/20 Ne	1.23	0.84
ratio($\overline{\Lambda}\Sigma^{-}$)/ratio($\overline{\Lambda}\Lambda$)	1.46	

Further options:

- Any other pair: $\Sigma \overline{\Sigma}$, $\Xi \overline{\Xi}$, $\Lambda_c \overline{\Lambda}_c$
- Long lived resonances in nuclei

Λ(1520) (Γ= 15.6 MeV)

 $Λ_{c}(2880)$ (Γ=5.8MeV)

Strangeness Nuclear Physics

strangeness in nuclei

- YⁿN^m interaction are important
- precision studies are needed
- after 60 still many puzzles

PANDA offers a broad physics program

- antihyperons in nuclei → PANDA day-1
- excited state spectroscopy of double hypernuclei

many things could not be mentioned

- hyper atoms
- neutron skin
- hyperon structure e.g. $E2(\Omega)$?
- mini p p collider ?

Thank you for your attention