

Hypernuclei in Heavy Ion Collisions: Observations - Opportunities - Outlook

Josef Pochodzalla JGU Mainz & Helmholtz-Institut Mainz

JGU

Production of Hypernuclei Hypernuclei from Hot Participants' zone Hypernuclei from Cold Spectators Prospects: Study of S=-2 Systems

JGIU Strangeness Nuclear Physics

hyperatoms

hypernuclei

(anti)hyperon scattering

Recent Progress in Strangeness and Charm Hadronic and Nuclear Physics Edts. A. Gal and JP Nucl. Phys. A **954**, 1–2 (2016)

Theoretical considerations for HI: PRC **86**, 011601(R) (2012) PRC **88**, 054605 (2013) PLB **742**, 7 (2015) Eur. Phys. J. **52**, 242 (2016) PRC **94**, 054615 (2016) PRC **95**, 014902 (2017) JP PLB **669**, 306 (2008) Sanchez *et al.*, PLB 749, 421 (2015)

Bernuclear Activities

Bernuclear Activities

JGU The twofold way to hypernuclei

DIRECT PRODUCTION SPECTROSCOPY

missing mass in two-body kinematics

Examples

- strangeness production $(\pi^+, K^+), (\pi^-, K^0)$
- strangeness exchange (K⁻, π⁻), (K⁻, π⁰), (K⁻, K⁺)
- electroproduction (e,e'K⁺), (γ,K⁺)

DECAY SPECTROSCOPY

- γ-decay of excited states
- π from weak decay
- charged fragments

Examples

- nuclear emulsions
- heavy ion reactions
- antiproton induced reactions
- continuum excitation in (e,e'K⁺)

19 40 Years Participant-Spectator Model

J. Knoll et al. Nucl. Phys. A304 (1978) 298.M. Guylassy et al., Phys. Rev. Lett. 40 (1978) 298.

JGIU Hypernuclei from Participants' zone

$_{\Lambda}^{JG}$ JG $_{\Lambda}^{JG}$ H at STAR

- STAR@RHIC : Au+Au at 200AGeV
 - $\sim 10^8$ minimum bias events, $\sim 2.10^7$ central events
 - 157±30 hypertritons 70±17 antihypertritons

STAR collaboration, NATURE 328 (2010)

background shape determined from rotated background analysis
Mass: 2.990 ± 0.001 GeV; Width (fixed): 0.0025 GeV.

JGIU Observation of Anti-hypernuclei

Helmholtz-Institut Mainz

Experiment	Reaction	$\langle y/y_{cm} \rangle$	$\sqrt{s_{NN}}$ [GeV]	$^{3}_{\Lambda}$ H	$\frac{3}{\Lambda}H$	${}^4_{\Lambda}H$
E864	Au+Pt	0.3	5.0	1220±854	-	-
HADES	Ar+KCI	-0.45	2.6	$\frac{\frac{3}{\Lambda}H}{N_{\Lambda}} < 2.5 \cdot 10^{-2}$	-	-
STAR	Au+Au	0	7.7-200	ⁿ ≈400	≈ 200	-
ALICE	Pb+Pb	0	2760	≈124	≈ 90	-

Penalty for heavy fragments

Strangeness Population Factor

$^{JG|U} {}^{3}_{\Lambda}H : a Quantum Halo$

ratio of halo and core-potential square radii

K.Riisager, D.V.FedorovandA.S.Jensen, Europhys. Lett 49, 547 (2000)

scaled separation energy

Hadronic Debey Screening

H. Nemura et al., Prog. Theor. Phys. 103 (2000)

 $\Rightarrow 4_{\Lambda}^{}H$ might help to distinguish the scenarios

The Hypertriton Puzzle

ALICE, Phys. Lett. B 764, 360 (2016)

^{JG} The ³ H Binding Energy

^{JG|U} The ³^AH problem

Gogami et al. PRC (2016)

 \Rightarrow need precision measurement of ${}^{3}{}_{\Lambda}$ H to solidify experimental basis \Rightarrow pion spectroscoy at MAMI

IGIN High resolution π -Spectrocopy @MAM

Main systematic error due to uncertainty of the absolute MAMI beam energy \Rightarrow interference of coherent undulator radiation improved luminosity by $\times 50$ with Li target

Spectator zone

SPECTATOR MATTER

- moderate excitation energy
- hyperons produced by rescattering
- capture of hyperons
- no antibaryons
- MULTIFRAGMENTATION

A. Botvina *et al.*, PRC 84, 064904 (2011)

Relativistic Hypernuclei

Many predictions based on coalescence model or Fermi breakup

- M. Sano, INS-PT-31 (1982), M. Wakai, H. Bando and M. Sano, PRC 38, 748 (1988)
- J. Aichelin and K. Werner, PLB 274, 260 (1992), S. Hirenzaka, T. Suzuki and I. Tanihata, PRC 48, 2403 (1993), M. Sano and M. Wakai, PTP Suppl. 117, 99 (1994)
- Botvina *et al*....
- General features
 - local maximum at ~4AGeV
 - single Λ -hypernuclei ~0.1µb
 - ΛΛ-hypernuclei ~0.01 nb

FIG. 5. Yields of particular hypernuclei (see figure and the text) obtained from projectile residues in collisions of ¹²C with ¹²C versus projectile energy in laboratory system. The hybrid DCM and FBM calculations are integrated over all impact parameters and normalized to one inelastic collision event.

PRC 88, 054605 (2013)

Central vs. peripheral collisions

Eur. Phys. J. 52, 242 (2016)

HYBS @ Dubna and HYPHI @ GSI

Experiment	Reaction	$\langle y/y_{\it cm} \rangle$	$\sqrt{s_{NN}}$ [GeV]	$^{3}_{\Lambda}H$	$\frac{3}{\Lambda}H$	$^{4}_{\Lambda}H$
E864	Au+Pt	0.3	5.0	1220±854	-	-
HADES	Ar+KCl	-0.45	2.6	$\frac{\frac{3}{\Lambda}H}{N_{\Lambda}} < 2.5 \cdot 10^{-2}$	-	-
STAR	Au+Au	0	7.7-200	[™] ≈400	≈ 200	-
ALICE	Pb+Pb	0	2760	≈ 124	\approx 90	-
HYBS Dubna	3,4 He, 6,7 Li+C		2.8-3.6	2/few events	-	18/22
HYPHI	6 Li $+^{12}$ C	1	2.7	$178{\pm}31$	-	66±14

Secondary HI beams @ FAIR

PRC 88, 054605 (2013)

 \Rightarrow neutron or proton rich hypernuclei @ sFRS

Double Hypernuclei are Shy

Υ.

1 45

•

R			da.	
Nucleus	$\Delta B_{\Lambda\Lambda}(^{A}_{\Lambda\Lambda}Z)$ (MeV)	Experiment	Reference	Remark
$^{10}_{\Lambda\Lambda}$ Be	4.3 ± 0.4	Danysz (1963)	[77, 78]	K ⁻ + nuclear emulsion;
			[74]	$\Delta B_{\Lambda\Lambda}$ consistent with
				NAGARA if decay to $^{9}_{\Lambda}$ Be*
				at E_xpprox 3 MeV [81, 11]
$^{6}_{\Lambda\Lambda}$ He	4.7 ± 0.6	Prowse (1966)	[198]	K ⁻ + nuclear emulsion
				only schematic drawing
$^{10}_{\Lambda\Lambda}$ Be	-4.9 ± 0.7	KEK-E176 (1991)	[20, 245]	hybrid-emulsion
or $^{13}_{\Lambda\Lambda}$ B	0.6 ± 0.8	Aoki event	[88, 24, 172]	$(K^-,K^+)\Xi^{stopped}$
⁶ ллНе	0.67 ± 0.17	KEK-E373 (2001)	[226, 172]	hybrid emulsion
		NAGARA event	[11]	
$^{10}_{\Lambda\Lambda}$ Be	-1.65 ± 0.15	KEK-E373 (2001)	[10, 172]	$B_{\Lambda\Lambda}$ consistent with
or $^{10}_{\Lambda\Lambda}$ Be*		DEMACHIYANAGI event	[11]	Danysz if $E_x \approx 2.8 \text{MeV}$
$^{6}_{\Lambda\Lambda}$ He	3.77 ± 1.71	KEK-E373 (2003)	[227, 11]	
or $^{11}_{\Lambda\Lambda}$ Be*	3.95 ± 3.00 or 4.85 ± 2.63	MIKAGE event		
$^{12}_{\Lambda\Lambda}$ Be	2.00 ± 1.21	KEK-E373 (2010)	[172, 11]	
or $^{11}_{\Lambda\Lambda}$ Be*	2.61 ± 1.34	HIDA event		

^{JG}^{JG} S=-2 systems

HIM Helmholtz-Institut Mainz

> missing mass (K⁻,K⁺) reactions ⇒ Ξ bound state J-PARC
 > Ξ capture ⇒ Ξ atoms J-PARC, FAIR

Double Hypernuclei at ALICE ?

Double Hypernuclei in Peripheral HI

Double Hypernuclei at ALICE ?

Future HI Experiments

Helmholtz-Institut Mainz

Interaction Rate [Hz]

10⁷

10⁶

10⁵

 10^{4}

10³

10²

10

НІМ

Thank you

JG

Proton Numbe

Missing Mass & Decay Spectroscop

Cosmic ray interactions (Emulsion) Heavy Ion (HypHI, STAR, ALICE, CBM...) Precission Pion Spectroscopy (MZ) Antiprotons

10						$^{17}_{\Lambda}\text{Ne}$) re	¹⁹ / ₀ Ne	²⁰ ∧Ne	²¹ Ne	²² ∧Ne	²³ ∧Ne	$^{24}_{\Lambda}\text{Ne}$	$^{25}_{\Lambda}\text{Ne}$	$^{26}_{\wedge} Ne$	$^{27}_{\wedge}{ m Ne}$	$^{28}_{\wedge} \text{Ne}$	$^{29}_{\wedge}\text{Ne}$	³⁰ ∧Ne	$^{31}_{\Lambda}\text{Ne}$
9						$^{16}_{\wedge}F$	$^{17}_{\wedge}F$	^18 F	۴	^20 F	$^{21}_{\Lambda}F$	$^{22}_{\wedge}F$	^23 ∧ F	$^{24}_{\wedge}F$	$^{25}_{\Lambda}F$	$^{26}_{\wedge}F$	$^{27}_{\wedge}F$	^28 F	^29 F	^30 F
8				^13 ∧	^14 ∧	^15 ∧	¹⁶ ∧O	170	¹⁸ ∩	¹⁹ ∧O	²⁰ ∧	²¹ ∧	²² ∧O	^23 ∧	²⁴ O	$^{25}_{\Lambda}{ m O}$	^26 ∧	²⁷ ∧O		
7				$^{12}_{\Lambda} N$	$^{13}_{\Lambda} N$	$^{14}_{\Lambda}$ N	15 N	$^{16}_{\Lambda}$ N	$^{17}_{\wedge}$ N	¹⁸ ∧N	$^{19}_{\Lambda}$ N	$^{20}_{\wedge}{ m N}$	$^{21}_{\Lambda} N$	$^{22}_{\wedge}{\sf N}$	$^{23}_{\Lambda}{ m N}$	$^{24}_{\Lambda}{ m N}$				
6			^10 C	$^{11}_{\Lambda}\text{C}$	$^{12}_{\Lambda}\text{C}$	13 /	¹⁴ ∧C	^15 C	^16 ∧ C	¹⁷ ∧C	^18 C	^19 C	$^{20}_{\wedge}{ m C}$	²¹ ∧C		n -	$\rightarrow \Lambda$		(<i>K</i> ⁻,	π^{-})
5			⁹ ∧B	¹⁰ B	11 5	¹² ∧B	$^{13}_{\Lambda}B$	$^{14}_{\wedge}B$	$^{15}_{\wedge}{ m B}$	^16 ∧ B	$^{17}_{\Lambda}{ m B}$	^ ¹⁸ B							$(K_{sto}^{-}$	$_{op},\pi^{-})$
4		⁷ ∧Be	²∧Be	°∧ Pe	¹⁰ Be	$^{11}_{\Lambda}\text{Be}$	$^{12}_{\Lambda}\text{Be}$	¹³ ∧Be	$^{14}_{\Lambda}\text{Be}$	$^{15}_{\Lambda}\text{Be}$									$(\pi^{\scriptscriptstyle +},$	<i>K</i> ⁺)
3		⁶ Li	7 Ki	⁸ ∧Li	⁹ Li	¹⁰ ∟i	$^{11}_{\Lambda}$ Li	$^{12}_{\Lambda}\text{Li}$								<u>р</u> -	$\rightarrow \Lambda$:	(<i>e</i> , <i>e</i>	′K ⁺)
2	⁴ ∧He	⁵ He	⁶ ∧He	⁷ ∧He	⁸ ∧He	⁹ ∧He													(K_{sto}^{-})	$_{p},\pi^{0})$
1	³ H	⁴ ∧H														pp	$\rightarrow r$	Λ:	(π ⁻ ,	K ⁺)
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20

Neutron Number