The primary target system for the hypernuclear experiment at PANDA@FAIR

*Falk Schupp¹, Patrick Achenbach^{1,2}, Sebastian Bleser¹, Michael Bölting¹, Jürgen Gerl³, Ivan Kojouharov³, Josef Pochodzalla^{1,2}, Birte Sauer¹, **Marcell Steinen¹**, Christian Tiefenthaler¹

¹Helmholtz-Institut Mainz, Germany; ²Institut für Kernphysik, Johannes Gutenberg-Universität Mainz, Germany; ³GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany

- Resistant to radiation, magnetic fields and vacuum
- Thin target filaments due to high beam rates
- Two dimensional motion with piezo motors
- Position control by additional sensors required
- Stores up to five filament targets
- Replacement of damaged targets during beam time
- - Effective production of slow Ξ
 - Minimal background and beam degradation
 - Best candidate: carbon

- Backside view of primary target setup:
- Optical fibers transport infrared light
- Bisected light guide used (incident and reflected)
- Active components outside PANDA detector • No special requirements (vacuum/magnetic field/radiation) • Unpolished aluminum as reflector

- Position detection using infrared light
- Measurement of reflected light on structured surface
- Elevations create specific signals

- Signal for various geometries Select signal with local maximum
 - Required precision: 100 µm • Current precision: 62 µm • Further improvements still possible

