DEGAS Workshop GSI - 26-27 February 2018 Gamma-Spectroscopy of s=-2 Nuclei at PANDA

AHe

Li

He

He

SH

AH

20

n

*A

H

H

³He

3Ħ

T

FY

He

He

·H

n

3H

10 Be

10 B

"Li

He

⁶He

⁵H

1B

ABe Be Be

Li

He

⁵He

⁴H

Josef Pochodzalla

20 CI

Si

AI

Mg

Na

²Ne

21 F

20 O

¹⁹ N

18 C

17 B

27 5

Si

19 O

18 N

17 C

¹⁶ B

Si

17 N

16 C

15 B

¹⁴Be

4P

23 Si

Ne

15 C

14 B

¹²Be ¹³Be

¹² Li

18

2Si

AI

10 N

27 4

10

16 N

14 C

15 O

E.I

12 B

¹¹ Be

° Li

⁹He

14 0

¹³B

Li

¹⁰ He

14 N

1ª C

12 B

10 Li

1º Be

°Li

⁸He

12 C

11 B

ABe.

Li

He

^eLi

He

⁶H

JGU Mainz & Helmholtz-Institut – Mainz – European Union

hyperatoms

the states

(anti)hyperon scattering

hypernuclei strangeness nuclear physics

nuclear |

structure

lfrom Standarc Model

EOS

compressed

from Standard Model +strong field GRAVITY

JG Hyperons in dense nuclear matter

YN and YY Interaction

- YY vector meson repulsion: φ meson coupled only to hyperons; yielding strong repulson at high ρ
- Chiral forces: YN from *χ*EFT predicts Λ s.p. potential more repulsive than from meson exchange

Hyperonic Threebody force

 Natural solution based on the known importance of 3NN forces in nuclear physics

Y. Yamamoto, T. Furumoto, N. Yasutake, Th. A Rijken, Phys. Rev. C 90, 045805 (2014)

Quark Matter

- Phase transition to deconfined QM at densities lower than hyperon appearence
- That requires QM which
- (i) is significantly repulsive
- (ii) attractive enough to avoid reconfinement

^{JG|} Three-body forces in Hypernuclei

Bogdan Povh, Michael Uhrmacher Physik in unserer Zeit 5, 138 (1981)

Stefano Gandolfi Diego Lonardoni, arXiv: 1512.06832

Three baryon interactions involving hyperons are essential ⇒ precission studies of light hypernuclei

HIM Helmholtz-Institut Mainz

> Mass difference between Σ and Λ in single hypernuclei is small Thomas Rijken

hyperon coupling important phenomenon in hypernuclei

Charge Symmetry Breaking

- ▶ Binding energy difference ΔB_{Λ} direct measure of CSB (Coulomb corrections are small ~50keV)
- > ${}^{4}_{\Lambda}H {}^{4}_{\Lambda}He$ ground state mass difference exceptionally large ~300keV

What is the spin dependence of the NA CSB?

> before 2015: not compatible with *all* state-of-the-art calculations

- 2015: strong, spin-dependent charge symmetry breaking (CSB) in A = 4 mirror hypernuclei !
- Compatible with *ab initio* calculations

^{JG} Mixing in A=4 Hypersystems

 Coulomb interaction and mass difference in Σ isotriplet is important (Gibson, Goldberg, Weiss 1972)

Double Hypernuclei

$\Xi^{-}p \rightarrow \Lambda\Lambda + 28MeV$

Double Hypernuclei are Shy

Nucleus	$\Delta B_{\Lambda\Lambda}(^{A}_{\Lambda\Lambda}Z)$ (MeV)	Experiment	Reference	Remark
$^{10}_{\Lambda\Lambda}$ Be	4.3 ± 0.4	Danysz (1963)	[77, 78]	K ⁻ + nuclear emulsion;
			[74]	$\Delta B_{\Lambda\Lambda}$ consistent with
				NAGARA if decay to $^9_{\Lambda}$ Be*
				at E_xpprox 3 MeV [81, 11]
_{6 ЛЛ} Не	4.7 ± 0.6	Prowse (1966)	[198]	K ⁻ + nuclear emulsion
				only schematic drawing
¹⁰ _{ΛΛ} Be	-4.9 ± 0.7	KEK-E176 (1991)	[20, 245]	hybrid-emulsion
or $^{13}_{\Lambda\Lambda}$ B	0.6 ± 0.8	Aoki event	[88, 24, 172]	$(K^-,K^+)\Xi^{stopped}$
⁶ _{ΛΛ} He	0.67 ± 0.17	KEK-E373 (2001)	[226, 172]	hybrid emulsion
		NAGARA event	[11]	
¹⁰ _{ΛΛ} Be	-1.65 ± 0.15	KEK-E373 (2001)	[10, 172]	$B_{\Lambda\Lambda}$ consistent with
or $^{10}_{\Lambda\Lambda}$ Be*		DEMACHIYANAGI event	[11]	Danysz if $E_x \approx 2.8 \text{ MeV}$
$^{6}_{\Lambda\Lambda}$ He	3.77 ± 1.71	KEK-E373 (2003)	[227, 11]	
or $^{11}_{\Lambda\Lambda}$ Be*	3.95 ± 3.00 or 4.85 ± 2.63	MIKAGE event		
$^{12}_{\Lambda\Lambda}$ Be	2.00 ± 1.21	KEK-E373 (2010)	[172, 11]	
or $^{11}_{\Lambda\Lambda}$ Be*	2.61 ± 1.34	HIDA event		

- Beam exposure has successfully been performed for all emulsion stacks in 2016/2017
- auto-scanning has started
- Iimitation: only ground state masses for AA-hypernuclei can be determined

HIM Helmholtz-Institut Mainz

> Mass difference between Σ and Λ in single hypernuclei is small Thomas Rijken

hyperon coupling important phenomenon in hypernuclei

JGIU Mixing in Double Hypernuclei

- mixing and Pauli repulsion may procduce an effectivde 3-body repulsion
- depends on spin/nuclear structure of hypernculei
- this mixing might be reflected in the level scheme of double hypernuclei
- precise study needed
- \Rightarrow high resolution γ -spectroscopy

JGIU Spectroscopy of ΛΛ-hypernuclei

E. Hiyama, M. Kamimura, T.Motoba, T. Yamada and Y. Yamamoto Phys. Rev. 66 (2002), 024007

many excited, particle stable states in double hypernuclei predicted

level structure reflects in 0th order levels of core nucleus

JGU PANDA – a Factory for strange and charmed YY-Pairs

Production Rates (1-2 (fb)-1/y)					
Final State	cross section	# reconstr. events/y			
Meson resonance + anything	100µb	1010			
$\Lambda\overline{\Lambda}$	50µb	10 ¹⁰			
$\Xi\overline{\Xi}(\rightarrow_{\Lambda\Lambda}A)$	2µb	$10^8 (10^5)$			
$D\overline{D}$	250nb	107			
$J/\psi(\rightarrow e^+e^-,\mu^+\mu^-)$	630nb	109			
$\chi_2 (\rightarrow J/\psi + \gamma)$	3.7nb	107			
$\Lambda_c\overline{\Lambda}_c$	20nb	107			
$\Omega_{\alpha}\overline{\Omega}_{\alpha}$	0.1nb	105			

^{JG|U} Strange Systems at PANDA

Primary Target

> Task: maximize slow Ξ^- production

Target material: C filament 5μm

- production cross section
- slow down process
- beam losses...
- ultra high vacuum
- magnetic field
- radiation hardness
 e.g. passive position control

Secondary target

Task: stopping of Ξ^- and tracking of 2 π^- from weak decay of double hypernuclei

E-Hyeratoms

JGIU PANDA Setup for Hyperatoms

Advantages compared to J-PARC:

- very thin primary target
- primary and secondary target separated
- relative thin secondary target
 - \Rightarrow moderate x-ray absorption
 - \Rightarrow detection of cacades possible
- ▶ tracking secondary particles possible ⇒ reduced background

Count rate: $\times 100$ double hypernuclei \Rightarrow ideal for initial phase

J-PARC vs. FAIR

	J-PARC	FAIR
Double Hypernuclei	 E07 1.8 GeV/c K⁻ beam hybrid-emulsion only ground state masses 	 PANDA p in HESR fully electronic γ-spectroscopy
E- atoms	 E03 1.8 GeV/c K⁻ beam thick target only light and medieum heavy elements (Fe) 	 Primary and secondary target separeted γ cascades also heavy elements

Element	z	Α	Isotopic abundancy [%]	Energy 1 [keV]	Energy 2 [keV]	Shift 2 [keV]	Width 2 [keV]	Yield [%]
Fe	26	56	91.8	172.2	287	1.1	0.7	57.1
Nb	41	93	100	280.9	437.5	4.317	3.61	32.2
In	49	115	95.7	275.8	403.6	0.909	0.5	65
Та	73	181	99.9	325.6	440.7	0.23	0.11	88.8
Au	79	197	100	381.7	517.1	0.68	0.43	78.4
Pb	82	208	52.4	411.5	558.5	1.8	1.3	56.5

Timescale **JGU**

- Helmholtz-Institut Mainz
- HIM will support the construction of DEGAS triple detectors
 - lab space at HIM \succ
 - financial support (2018, 2019)
- \overline{p} beam in HESR will be available ~2025
- if proton beam will be avaiable earlier
 - primray target test (radiation hardness)
 - secondary target test; tracking etc \triangleright
 - test of \geq 1 triple DEGAS cluster \succ
- PANDA forsees two running periods for this project

the DEGASIDESPEC and the PANDA collaborations regarding the construction and use of

regarding the construction and use of DEGAS-type triple cluster detectors at PANDA

and their spectroscopy is one of the key their spectroscopy is une or une hors, BANDA DOUBLY strange to main he

nain pro converting a EP

- >2025: hyperatoms
- >20xx: hypernuclei
- Needed: MoU

Thank you for your attention