It gegan in Warsaw – September 19th 1952

Marian Danysz, Jerzy Pniewski, et al. Bull. Acad. Pol. Sci. III **1**, 42 (1953)

Marian Danysz, Jerzy Pniewski, Phil. Mag. **44**, 348 (1953)

ENSAR2 - NUSPRASEN Workshop on Nuclear Reactions (Theory and Experiment) Warsawa - 22-24 January 2018 Open problems in hypernuclear physics

AHe

Li

He

He

AH

He

He

CH4

n

3H

F4

H

20

n

*H

H

³He

3H

10 Be

10 B

"Li

⁷He

⁶He

5H

1B

ABe Be Be

Li

He

⁵He

⁴H

Josef Pochodzalla

2Si

N

27 14

10

16 N

14 C

15 O

FA

¹³B

Li

¹⁰ He

12 B

¹¹Be

° Li

⁹He

14 N

AC

12 B

10 Li

1º Be

°Li

⁸He

12 C

11 B

ABe

"Li

⁸_AHe

⁸Li

He

°H

Si

Ne

15 C

14 B

¹²Be ¹³Be

12 Li

Si

17 N

16 C

15 B

¹⁴ Be

Si

AI

Mg

'Na

Ne

20 O

19 N

18 C

17 B

0

18 N

17 C

¹⁶ B

JGU Mainz & Helmholtz-Institut – Mainz – European Union

The Hyperon Puzzle

hyperatoms

the states

(anti)hyperon scattering

strangeness nuclear physics

nuclear

structure

from Standarc Model

EOS

compressed hadronic matter

A CONTRACTOR

from Standard Model +strong field GRAVITY

JGIU Hyperon Puzzle

 $\Rightarrow \text{appearence of hyperons at} \quad \rho_{\Lambda} \approx 5.5 \rho_{0}$ with interactions $\rho_{\Lambda} \approx 2 - 3\rho_{0}$

But:

- the appearance of hyperons
- \Rightarrow relieve of Fermi pressure
- \Rightarrow softer equation of state
- \Rightarrow reduction of maximal mass

M(PSR J1614-2230) = $1.928 \pm 0.017 M_{\odot}$

 $M(PSR J0348+0432)=2.01 \pm 0.04 M_{\odot}$

M(PSR J1946+3417)= 1.828 ± 0.022 M_{\odot}

P. B. Demorest *et al.*, Nature 467 (2010)
update: E. Fonseca et al., ApJ 832, 167 (2016)
J. Antoniadis *et al.*, Science 340 (2013)
E.D. Barr *et al.*, MNRAS 465, 1711–1719 (2017)

Possible Solutions to the Puzzle

YN and YY Interaction

- YY vector meson repulsion: φ meson coupled only to hyperons; yielding strong repulson at high ρ
- Chiral forces: YN from *χ*EFT predicts Λ s.p. potential more repulsive than from meson exchange

Hyperonic Threebody force

 Natural solution based on the known importance of 3NN forces in nuclear physics

Y. Yamamoto, T. Furumoto, N. Yasutake, Th. A Rijken, Phys. Rev. C 90, 045805 (2014)

Quark Matter

- Phase transition to deconfined QM at densities lower than hyperon appearence
- That requires QM which
- (i) is significantly repulsive
- (ii) attractive enough to avoid reconfinement

Possible Solutions to the Puzzle

The Hypertriton Puzzle

The Hypertriton Puzzle

Do we understand the simplest Hypernucleus?

JG The ${}^{3}_{\Lambda}$ H Puzzle: Part 1 - Λ Binding Energy

- ³_AH is most fascinating halo nucleus
 - Binding energy ${\approx}130 keV ~~{\Rightarrow}$ Characteristic length of two-body s-wave halo system small

$$\left<\Delta r^2\right> = \hbar^2 / (4\mu B) \longrightarrow 10 \, \text{fm}$$

scaled separation energy

^{JG} The ³ H Puzzle: Part 2 - Lifetime

STAR arXiv:1710.00436v1 [nucl-ex] 1st Oct 2017

small binding energy ? small lifetime

^{JG} Approaching the ³ H Puzzle

small binding energy

small lifetime

- New precision mass measurement at MAMI in 2019
 - Make use of excellent beam quality at MAMI
 - Precision *absolute* energy calibration interference of undulator radiation

- > new lifetime measurements
 - 2019: ELPH (γ,K⁺)
 - 2019: WASA @ GSI/FAIR
 - 2018: ALICE end Run2: 2x statistics
 - 2023: ALICE end run 3: 200x stat.
 - 202x: J-PARC (π⁻,K⁰)

Double Hypernuclei

$\Xi^{-}p \rightarrow \Lambda\Lambda + 28MeV$

Double Hypernuclei are Shy

NI C Ne MA

Nucleus	$\Delta B_{\Lambda\Lambda}(^{A}_{\Lambda\Lambda}Z)$ (MeV)	Experiment	Reference	Remark
$^{10}_{\Lambda\Lambda}$ Be	4.3 ± 0.4	Danysz (1963)	[77, 78]	K ⁻ + nuclear emulsion;
			[74]	$\Delta B_{\Lambda\Lambda}$ consistent with
				NAGARA if decay to $^9_{\Lambda}$ Be*
				at E_xpprox 3 MeV [81, 11]
_{6 ЛЛ} Не	4.7 ± 0.6	Prowse (1966)	[198]	K ⁻ + nuclear emulsion
				only schematic drawing
¹⁰ _{ΛΛ} Be	-4.9 ± 0.7	KEK-E176 (1991)	[20, 245]	hybrid-emulsion
or $^{13}_{\Lambda\Lambda}$ B	0.6 ± 0.8	Aoki event	[88, 24, 172]	$(K^-,K^+)\Xi^{stopped}$
⁶ _{ΛΛ} He	0.67 ± 0.17	KEK-E373 (2001)	[226, 172]	hybrid emulsion
		NAGARA event	[11]	
¹⁰ _{ΛΛ} Be	-1.65 ± 0.15	KEK-E373 (2001)	[10, 172]	$B_{\Lambda\Lambda}$ consistent with
or $^{10}_{\Lambda\Lambda}$ Be*		DEMACHIYANAGI event	[11]	Danysz if E_xpprox 2.8 MeV
$^{6}_{\Lambda\Lambda}$ He	3.77 ± 1.71	KEK-E373 (2003)	[227, 11]	
or $^{11}_{\Lambda\Lambda}$ Be*	3.95 ± 3.00 or 4.85 ± 2.63	MIKAGE event		
$^{12}_{\Lambda\Lambda}$ Be	2.00 ± 1.21	KEK-E373 (2010)	[172, 11]	
or $^{11}_{\Lambda\Lambda}$ Be*	2.61 ± 1.34	HIDA event		

HIM Helmholtz-Institut Mainz

> Mass difference between Σ and Λ in single hypernuclei is small Thomas Rijken

hyperon coupling important phenomenon in hypernuclei

JGIU Mixing in Double Hypernuclei

- mixing and Pauli repulsion may procduce an effectivde 3-body repulsion
- depends on spin/nuclear structure of hypernculei
- this mixing might be reflected in the level scheme of double hypernuclei
- precise study needed
- \Rightarrow high resolution γ -spectroscopy

^{JG} Spectroscopy of ΛΛ-hypernuclei

E. Hiyama, M. Kamimura, T.Motoba, T. Yamada and Y. Yamamoto Phys. Rev. 66 (2002), 024007

many excited, particle stable states in double hypernuclei predicted

level structure reflects in 0th order levels of core nucleus

JGU PANDA – a Factory for strange and charmed YY-Pairs

Production Rates (1-2 (fb) ⁻¹ /y)					
Final State	cross section	<u># reconstr. events/y</u>			
Meson resonance + anything	100µb	1010			
$\Lambda\overline{\Lambda}$	50µb	10 ¹⁰			
$\Xi\overline{\Xi}(\to_{\Lambda\Lambda}A)$	2µb	$10^8 (10^5)$			
$D\overline{D}$	250nb	107			
$J/\psi(\rightarrow e^+e^-,\mu^+\mu^-)$	630nb	109			
$\chi_2 (\rightarrow J/\psi + \gamma)$	3.7nb	107			
$\Lambda_c\overline{\Lambda}_c$	20nb	107			
$\Omega_{c}\overline{\Omega}_{c}$	0.1nb	105			

^{JGIU} Strange Systems at PANDA

^{JGIV} Simulation within PANDA_ROOT...

- Example: secondary ¹²C target (~2 weeks)
- gated with 2 positive pion momenta

Strangeness Nuclear Physics

= Strangeness in cold nuclei

Recent Progress in Strangeness and Charm Hadronic and Nuclear Physics Edts. A. Gal and JP Nucl. Phys. A **954**, 1–2 (2016)

Theoretical considerations for HI: PRC **86**, 011601(R) (2012) PRC **88**, 054605 (2013) PLB **742**, 7 (2015) Eur. Phys. J. **52**, 242 (2016) PRC **94**, 054615 (2016) PRC **95**, 014902 (2017) JP PLB **669**, 306 (2008) Sanchez *et al.*, PLB 749, 421 (2015)

JGIU Hypernuclear Activities Today

Thank you for your attention