International workshop on the project for the extended hadron experimental facility of J-PARC 26-28 March 2018 KEK Tokai Campus

Strangeness nuclear physics at

JGU Mainz & Helmholtz-Institut – Mainz – European Union

FAIR strongly interacting matter on all scales

P-Target

- Nuclear Structure & Astrophysics (rare isotope beams)
- QCD-Phase Diagram (HI beams 2 to 45 GeV/u)
- Fundamental Symmetries & Ultra-High EM Fields (anti-protons & highly stripped ions)

PANDA

HESR

- Hadron Physics (stored and cooled 15 GeV/c anti-protons)
- Dense Bulk Plasmas (ion beam bunch compression & petawatt-laser)
- Materials Science & Radiation Biology (ion & anti-proton beams)

^{JGI} High Energy Storage Ring HESR

- Circumference 575 m
- Momentum 1.5 15 GeV/c
- Stochastic cooling
- 10¹¹ antiprotons stored
- Luminosity up to 2.10³² cm⁻²s⁻¹
- $\Delta p/p \le 2 \cdot 10^{-4}$

JGIU The PANDA Detector

JGU PANDA – a Factory for strange and charmed YY-Pairs

Momentum (GeV/c)	Reaction	σ (μb)	Efficiency (%)	Rate (with 10 ³¹ cm ⁻¹ s ⁻¹)
1.64	pp → ⊼∧	64	10	30 s ⁻¹
4	$\bar{p}p \rightarrow \bar{\Lambda}\Sigma^{0}$	~40	30	30 s ⁻¹
4	pp → Ξ+Ξ-	~2	20	2 s ⁻¹
12	p̄p → ΩΩ	~0.002	30	~4 h ⁻¹
12	$\bar{p}p \rightarrow \bar{\Lambda}_c \Lambda_c$	~0.1	35	~2 day ⁻¹

JGIU Timeline

= Strangeness in cold nuclei

(anti)hyperons in nuclei

 Ξ^{-} hyperatoms

ΛΛ hypernuclei

PHASE-1 2025

Phase-2 ~2026+

Phase-2 ~2026++

Antihyperons in Nuclei

G-Parity and NN Potential JGU

- G=charge conjugation + 180° rotation around 2nd axis in isospin (Lee und Yang 1956, L. Michel 1952 "Isoparität") $G = C \cdot e^{i\pi I_2}$
- G-parity of particle-antiparticle multipletts

$$|G|\overline{\mathrm{ff}}\rangle = (-1)^{I}C|\overline{\mathrm{ff}}\rangle = (-1)^{I+L+S}|\overline{\mathrm{ff}}\rangle$$

- Hans-Peter Dürr and Edward Teller, Phys. Rev. 101, 494 (1956)
 - sign change in coupling constant when going from NN to $N\overline{N}$

$$G | \pi^{\pm 0} \rangle = (-1)^{1} C | \pi^{\pm 0} \rangle = - | \pi^{\pm 0} \rangle$$

$$G | \rho \rangle = (-1)^{1} C | \rho \rangle = + | \rho \rangle$$

$$G | \omega \rangle = (-1)^{0} C | \omega \rangle = - | \omega \rangle$$

$$G | \sigma \rangle = (-1)^{0} C | \sigma \rangle = + | \sigma \rangle$$

- Caveat: meson picture will probably not work at small distance
- Chance to study transition from meson to quark-gluon regime

Antibaryon in nuclear medium

Jaroslava Hrtánková, Jiří Mareš, arXiv:1710.02045 [nucl-th].

Phase-1 Experiment: A Potential in N

Scan of $\overline{\Lambda}$ Potential with GiBUU

- ▶ U(A) = -449MeV, -225MeV, -112MeV, 0MeV
- All other potentials unchanged

JGU

Λ

PLB 749, 421 (2015)

HIM elmholtz-Institut Mainz

Λ

 $\overline{\Lambda}$

$JG \cup O$ ther |s| = 1 channels @ 1000 MeV

 $\bar{p} + p \rightarrow \bar{\Lambda} + \Lambda$ $\bar{p} + p \rightarrow \bar{\Sigma}^0 + \Lambda$

Further options:

- > Any other pair: $\Sigma \overline{\Sigma}$, $\Xi \overline{\Xi}$, $\Lambda_c \overline{\Lambda}_c$
- Long lived resonances in nuclei
- Λ(1520) (Γ= 15.6 MeV)
- > Ξ(1530) (Γ=9.9 MeV)
- Λ_c(2880) (Γ=5.8MeV)

E-Hyperatoms

JGIU E03 and E07 @ J-PARC

► E07

- Beam exposure has successfully been performed for all emulsion stacks in 2016/2017
- auto-scanning has started
- ground state masses for AA-hypernuclei can be determined
- > Ξ^- Ag and Ξ^- Br X-rays

► E03

> Ξ⁻-Fe X-rays (medium mass targets)

^{JG}^{IJ} Ξ⁻ atom X-ray spectroscopy

- Shift of "lowest" atomic sensitive to Ξ--nucleus interaction
- Interpretation requires knowledge on
 - the neutron and proton distribution
 - the isospin dependence of the baryon-baryon force

[」]Isospin in Ξ⁻ atoms

It is important to measure both, light nuclei with I=0 (N=Z) and heavy nuclei (neutron skin)

elmholtz-Institut Main

Goal at PANDA: study well known double-magic nuclei

M. Centelles, X. Roca-Maza, X. Viñas, and M. Warda Phys. Rev. Lett. 102, 122502

^{JG}^{JG}²⁰⁸Pb – the known unknown

H.Sakaguchi and J.Zenihiro, Progr. in Part. and Nucl.Physics 97, 1 (2017)

Sensitivity to ²⁰⁸Pb structure

changing thickness of neutron skin artificially in calculation

M. Steinen and Eli Friedman

^{JG|U} Strange Systems at PANDA

Primary Target

> Task: maximize slow Ξ^- production

Target material: C filament 5μm

- production cross section
- slow down process
- beam losses...
- ultra high vacuum
- magnetic field
- radiation hardness
 e.g. passive position control

PANDA Setup for Hyperatoms

Shape of absorber optimized by GiBBU+GEANT4 simulations

- very thin primary target
- primary and secondary target separated
- relative thin secondary target
 - \Rightarrow moderate X-ray absorption
 - \Rightarrow detection of cacades possible
 - \Rightarrow heavy targets possible
- \succ tracking secondary particles also possible \Rightarrow reduced background

Count rate: $\times 100$ double hypernuclei \Rightarrow ideal for initial phase of PANDA

Double Hypernuclei

$\Xi^{-}p \rightarrow \Lambda\Lambda + 28MeV$

Secondary target

Task: stopping of Ξ^- and tracking of 2 π^- from weak decay of double hypernuclei

PHYSICAL REVIEW D

VOLUME 8, NUMBER 3

1 AUGUST 1973

Certification of Three Old Cosmic-Ray Emulsion Events as Ω^- Decays and Interactions

Luis W. Alvarez

"....The second event is clear-cut example of an Ω^- decaying in orbit, bound to a emulsion nucleus..."

In th

altitude, three events were found in which K^- mesons were Ω^- is the only presently known particle that can give rise to a Λ^- speed, but none of the three events has until now been clearly identified cosmic-ray events (Eisenberg, 1954) has been incorrectly interpreted as an Λ^- now shown to be an interaction in flight of an Ω^- with a silver r clear-cut example of an Ω^- decaying in orbit, bound to an emulsic complicated, but can be unambiguously attributed to the decay of nucleus, followed by a collision of the daughter Λ with the N¹⁴, in fragments into ${}_{\Lambda}C^{13} + p + n$. The mass of the Ω^- as determined et al., 1955) agrees closely with the mean of all bubble-chamber e

...seen in emulsions ~10 years prior to the "discovery" at Brookhaven in 1964

Note: in nuclei secondary processes possible $\overline{p} + n \rightarrow \overline{\Xi}^- + \Xi^0 \qquad \Xi^0 + X \rightarrow \Omega^- + K^+ + X$

 $\overline{p} + p \rightarrow \overline{\Xi}^{-} + \Xi^{-} \qquad \Xi^{-} + X \rightarrow \Omega^{-} + K^{0} + X$

ly moving particles. The ving at nonrelativistic n Ω^- . One of the decaving in flight: it is

t high

FIG. 1. A projection drawing of the K-mesonic decay of a slow particle is shown above. Track 1 is a short recoil. Track 2 was produced by a particle of Z=1. Track 3 was produced by a negative K-meson. A few tracks of particles from the primary star which are in the same direction as the connecting track, but at a different depth, were omitted from the drawing for the sake of clarity.

Thank you for your attention