

Heavy E⁻ hyperatoms at PANDA

Marcell Steinen – on behalf of the PANDA Collaboration In collaboration with E. Friedman Helmholtz-Institut Mainz

THEIA Workshop, Speyer, 27.11.2019

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 824093.

THEIA-STRONG2020 - Workshop 2019

Ξ-nucleus interaction

missing mass

E⁻ hypernuclei

spectroscopy of

(K⁻,K⁺) reactions

Ξ⁻ hypernuclei decays in emulsion

 $\stackrel{A}{=} Z \rightarrow^{A_1}_{\Lambda} Z_1 +^{A_2}_{\Lambda} Z_2$ K. Nakazawa et al., PTEP (2015) 033D02

J-PARC E07

Past

Present

Future

KEK E224 BNL E885

J-PARC E05

J-PARC E70

scattering or final state interaction

S. Acharya et al. Phys. Rev. Lett. 123, 112002

Talk: A. Mathis

 γ -spectroscopy of Ξ^{-} hyperatoms

STAR ALICE

J-PARC E07

J-PARC E03 **PANDA**

HELMHOLTZ Helmholtz-Institut Mainz_i

www.hi-mainz.de

- The PANDA experiment at FAIR
- Strangeness nuclear physics at PANDA
- Ξ^{-208} Pb hyperatom experiment at PANDA

FAIR

FAIR - under construction

SIS 100 Ring - Sep./Oct. 2019

Concrete:8 x Frankfurt stadiumSteel:9 x Eiffel Tower

https://www.gsi.de/forschungbeschleuniger/fair/bau_von_fair/bilder_und_videos.htm

HELMHOLTZ

Helmholtz-Institut Mainz

PANDA at FAIR

PANDA situated in High Energy Storage Ring

HELMHOLTZ Helmholtz-Institut Mainz

HIM

HESR

- Modularized start version
 - $-10^{10}\,\overline{p}$ stored
 - Luminosity up to $2x10^{31}$ cm⁻² s⁻¹
 - $p_{\bar{p}} = 1.5 15 \text{ GeV/c}$
 - $\Delta p/p \le 5x10^{-5}$

Physics pillars of PANDA

Hidden/open-charm states Gluon-rich QCD states Light-meson systems

Nucleon structure

Generalized parton distributions Drell Yan process Time-like form factors

Bound states and dynamics of QCD

Strange baryon spectroscopy Hyperon production & pol. Hyperon transition form factors

Strangeness in pp

Hadrons in nuclei Hyperon-nucleus dynamics Hypernuclei and Hyperatoms

Nuclear physics

PANDA as hyperon factory

@ 2 MHz pp

 $\Xi^{-}\overline{\Xi}^{+}$

~100 /s

HELMHOLTZ

Helmholtz-Institut Mainz

Strangeness nuclear physics

antihyperon potential in cold baryonic matter

 Ξ^{-} potential in neutron-rich baryonic matter

Structure of $\Lambda\Lambda$ hypernuclei, hyperon mixing

Methodology

See talk by J. Pochodzalla YY momentum correlations at threshold

Sanchez Lorente et al., Physics Letters B 749 (2015), pp. 421-424 Width and shift of atomic levels in Ξ⁻²⁰⁸Pb atoms

Excited state spectrum of light $\Lambda\Lambda$ hypernuclei

Pochodzalla et al., Nuclear Physics A 954 (2016) 323-34

www.hi-mainz.de

PANDA schedule

PANDA detector

Hypernuclear/atom setup not shown

- Almost 4π
- Avg. 20 MHz
- Software trigger

- High res. tracking + PID
- Vertex reconstr. for e.g.
 D, K⁰_S, hyperons
- PWO calorimeter

Production of hyperatoms/nuclei

- Primary target
 - Production of Ξ^{-} $\overline{p}N \rightarrow \Xi^{-} \overline{\Xi}^{+/0}$
- Secondary target
 - Stopping of Ξ^{-}
 - Atomic cascade of Ξ^-
 - Nuclear conversion Ξ^{-} + p -> $\Lambda\Lambda$ + 28 MeV
- PANGEA
 - X-Ray spectroscopy of heavy Ξ⁻ hyperatoms (0.1 - 1 MeV)
 - γ spectroscopy of light $\Lambda\Lambda$ hypernuclei (0.1 10 MeV)

Hypernuclear/atom setup

- Dedicated target system
- PANGEA

Target system

Primary target - Prototype

- 2D positioning system
 - Several targets
 - Steerable for constant luminosity

Carbon filament (r ~3µm)

- Small
- UHV compatible, magnetic field and radiation hard

Secondary target optimization

PANGEA

 γ_1

D

my2

D

κ^σ

0

ĸ

PANDA

Helmholtz-Institut Mainz

- Optimization of absorber shape
 - Maximize Ξ^{-} stopping
 - Minimize X-ray absorption

PANda GErmanium Array

- Collaboration with NuSTAR (DEGAS)
- 20 triple HPGe detectors
- Full energy efficiency $\sim 5 \% @ {}^{60}Co$
- Electro-mechanical cooling (~LN2 temp.)
- . BGO veto
- Fully integrated design

PANGEA: Cooling

HELMHOLTZ

Helmholtz-Institut Mainz

- Improved thermal insulation
- X-Cooler II/III too weak

PANGEA - Prototype

PANGEA: First spectrum

Flying assembly with prototype of preamplifier

Too high temperatures prevented fully biasing!

lelmholtz-Institut Mainz

Courtesy of I. Kojouharov

X-ray spectroscopy of Ξ^- -hyperatoms

X-ray spectroscopy of Ξ⁻hyperatoms

Observables

Ξ-nucleus potential

JANUARY 1999

Schematic calculations to explore experimental sensitivity.

$\Xi^{-} - 208 Pb$

Calculations performed with code provided by E. Friedman

HELMHOLTZ Helmholtz-Institut Mainz

HIM

Possible targets

Calculations performed with code provided by E. Friedman

HI

HELMHOLTZ

Helmholtz-Institut Mainz

Systematic uncertainties

Centelles et al., Phys.Rev.Lett. 102 (2009) 122502

- Neutron skin Δ_{np} in ²⁰⁸Pb well-established
- Present uncertainty of Δ_{np} -> Systematic uncertainty in observables
- $\delta \left(\Delta E^{nuc}_{(10,9) \rightarrow (9,8)} \right)_{sys} \sim \pm 100 \text{ eV}$

HELMHOLTZ

Helmholtz-Institut Mainz

Full simulation

Helmholtz-Institut Ma<u>inz</u>

Estimation of V_{Ξ}

Complementary experiments

J-PARC E07: Ξ⁻-C hyperatoms not included

Timeline

elmholtz-Institut Mainz

Take-home message

- PANDA@FAIR is a versatile experiment with a broad physics program
- Strangeness nuclear physics is an important pillar of PANDA
- Heavy hyperatoms unique for PANDA, complementary to J-PARC E03/07

Backup Slides

Stopping of secondary E-

FEP-efficiency PANGEA

HPGe irradiation test

- Irradiation test at COSY with single crystal prototype
- 5.5 days COSY
 → 96 days PANDA

Results

- DAQ and therm. issues decrease performance
- PSA allows partial resolution recovery
- Annealing recovers initial crystal performance
 - → Detector withstands irradiation
- New systematic test: TRIGA reactor (2019/20)

oltz-Institut Mainz