Antiproton-nucleus interactions and related phenomena ECT* 17-21 June 2019 Hyperatoms at PANDA

Crux Magic

Substrates 19.4 x217, period by A. Durer on how one and related phenomenaterior states and related phenomenaterior. June 17, 21, 2019

<text><text><text><text><text><text><text>

The PANDA Experiment
Strangness Nuclear
Physics at PANDA
Hyperatom and
Hypernucleus Setup
E hyperatoms at PANDA

Josef Pochodzalla JGU Mainz & Helmholtz-Institut – Mainz European Union

HIM HESR with PANDA and e⁻ Cooler

High resolution mode

- e^{-} cooling $1.5 \le p \le 8.9$ GeV/c
- 10¹⁰ antiprotons stored
- Luminosity up to 2.10³¹ cm⁻²s⁻¹
- $\Delta p/p \leq 4 \cdot 10^{-5}$

- High luminosity mode
 - Stochastic cooling $p \ge 3.8 \text{ GeV/c}$
 - 10¹¹ antiprotons stored
 - Luminosity up to 2.10³² cm⁻²s⁻¹
 - $\Delta p/p \leq 2 \cdot 10^{-4}$

Versatility of antiprotons

(pan da

Systematic and precise tool to rigorously study the dynamics of QCD

Physics Pillars of PANDA

COM

TES

 \mathbf{O}

STRONG

SPECTROSCOPY

- **New narrow XYZ:** Search for partner states
- **Production of exotic QCD states:** Glueballs and hybrids

NUCLEON STRUCTURE Generalized parton distributions: Orbital angular momentum INTERACTION **Prell Yan process:** Transverse Jucture, valence anti-quarks **ime-like form factors**: low and high E, e and µ pairs

ON ALL SCAL **STRANGENESS**

Strange baryons: spectroscopy, polarization

NUCLEAR PHYSICS

- S=-2 Hypernuclei and -atoms: • double hypernuclei, heavy Ξ atoms
- Antihyperons in nuclei

HIM PANDA planing

HIM Factory for strange and charmed $Y\overline{Y}$ -Pairs

5an)da

The PANDA Detector Helmholtz-Institut Mainz

ΗΙΜ

HIM Hyperons in Neutron Stars

- Sequence of hyperon appearance depends on B-B interaction
- > Σ –N interaction repulsive $\Rightarrow \Sigma$ will probably appear latest

Wei-Zhou Jiang, Bao-An Li, and Lie-Wen Chen, The Astrophysical Journal, Volume 756, Number 1

Strangeness Nuclear Physics -Institut Main

Dar

(anti)hyperon propagation

нім

antihyperon potential in cold baryonic matter

 $Y\overline{Y}$ momentum correlations at threshold

> Day-One ~weeks standard PANDA

hyperatoms

Physics Topic at PANDA

 Ξ^{-} potential in neutron-rich baryonic matter

Methodology

hypernuclei

Structure of double $\Lambda\Lambda$ hypernuclei, hyperon mixing

Excited state spectrum of light $\Lambda\Lambda$ hypernuclei

PHASE 2

DEGAS+active sec. target

Yusuke Tanimura Phys. Rev. C 99, 034324 (2019)

Width and shift of atomic levels Ξ^{-208} Pb atoms in

> PHASE 1 stable running 180d DEGAS+pr. target

$\overline{\Lambda} Potential in Nuclei$

Jaroslava Hrtankova

Large production yield at PANDA \Rightarrow DAY-ONE experiment

Ξ^{-} -Nucleus Interaction HIM Dar oltz-Institut Maina Ξ⁻ hypernuclei missing mass scattering or γ-spectroscopy decays spectroscopy of of heavy final state in emulsion E⁻ hypernuclei Ξ^{-} hyperatoms interaction (K⁻,K⁺) reactions K^+ Ξ Nakazawa et al. PTEP (2015) 033D02 **J-PARC E07 KEK E224 J-PARC E07 STAR BNL E885 J-PARC E03** ALICE PANDA

HIM S = -2 Systems at PANDA

Stopping of Secondary Hyperons

Dar

Primary target

passive 208Pb

ΛΛ-Hypernuclei

active 10,11B

HIM rimary Target

> Task: Ξ^{-} production by a ~5µm thin carbon filament

passive, radiation hard position control of the target carriage with piezo motors by measuring light reflected off a plane with grooves

Three Sides of a Coin

HIM

Choice of target nucleus

A. Trzcinska et al.

Let's Talk About Uncertainties

- > 180 days data taking
- ➢ 2·10⁶ interactions/s
- Full simulation

HIM Expected **E**⁻ Atom Rates

Take-home message

- PANDA@HESR is a versatile experiment with a broad unique physics program
- Strangeness nuclear physics is embedded in the quest to determine the EOS of dense stellar systems
- Hypernuclei and hyperatoms are unique femtolaboratories for YⁿN^m interaction

Thank you for your attention