Has the neutral double hypernucleus A_{nn}^4 been observed?

Sebastian Bleser^a, Michael Bölting^a, Theodoros Gaitanos^b, Josef Pochodzalla^{a,c}, Falk Schupp^a, Marcell Steinen^a

^a Helmholtz Institute Mainz, Johannes Gutenberg University
^b Aristotle University of Thessaloniki
^c Institute for Nuclear Physics, Johannes Gutenberg University

Physics Letters B 790, 502-508 (2019)

Falk Schupp Helmholtz Institute Mainz INPC 2019 Glasgow

Weak decay of Λ in nuclei

 $\Lambda \rightarrow p\pi^{-}: 101 \text{ MeV/c } (64\%)$ $\Lambda \rightarrow n\pi^{0}: 104 \text{ MeV/c } (36\%)$

Weak pionic two-body decay in light hypernuclei

A. Esser et al., Phys. Rev. Lett. 114, 232501 (2015)

• Two-body decays → Sharp pion momenta

Sequential decay of $\Lambda\Lambda$ hypernuclei

 Sequential pionic twobody decay of double ΛΛ hypernuclei will produce pairs of sharp pion momenta

- Double hypernuclei mass depends on the not well known Λ - Λ binding energy $\Delta B_{\Lambda\Lambda}$
 - → Momentum of first pion uncertain

The E906 puzzle

J. K. Ahn *et al.*, Phys. Rev. Lett. 87, 132504 (2011)

- Double strangeness exchange reaction (K⁻,K⁺) in ⁹Be target
- Measured momenta of two correlated pions

Two dominant structures:

(104, 114) MeV/c : ${}^{4}_{\Lambda\Lambda}$ H; More likely ${}^{7}_{\Lambda\Lambda}$ He (114, 133) MeV/c : ${}^{3}_{\Lambda}$ H+ ${}^{4}_{\Lambda}$ H S. D. Randeniya a Phys. Rev. C 76, C

S. D. Randeniya and E. V. Hungerford, Phys. Rev. C 76, 064308 (2007)

The E906 puzzle

J. K. Ahn et al., Phys. Rev. Lett. 87, 132504 (2011)

- Double strangeness exchange reaction (K⁻,K⁺) in ⁹Be target
- Measured momenta of two correlated pions

Two dominant structures:

(104, 114) MeV/c : ${}^{4}_{\Lambda\Lambda}$ H; More likely ${}^{7}_{\Lambda\Lambda}$ He (114, 133) MeV/c : ${}^{3}_{4}$ H + ${}^{4}_{4}$ H S. D. Randeniya a Phys. Rev. C. 76 (114)

S. D. Randeniya and E. V. Hungerford, Phys. Rev. C 76, 064308 (2007)

Why not ${}^{3}_{\Lambda}H + {}^{4}_{\Lambda}H$?

 Insufficient energy in case of Ξ[−] stopped in ⁹Be

Simulation of $\Xi_{rest}^- + {}^9Be$ using SMM

HIM

- Micro-canonical statistical multifragmentation model
 - Extended to strangeness

A. S. Botvina, J. Pochodzalla, Physical Review C 76, 024909 (2007)

- Area of circles proportional to production yields
- Center given by pion momenta in two-body decays ($\Delta B_{\Lambda\Lambda} = 1 \text{ MeV}$)
- Branching ratios for pionic two-body decay not taken into account.

Simulation of Ξ_{rest}^- + ⁹Be using SMM

HIM

- No production channel can explain area of interest
- Note: ${}_{\Lambda\Lambda}^{7}$ He is far more likely to reproduce the first dominant structure

Simulation of $\Xi_{rest}^- + {}^9Be$ using SMM

HIM HELMHOLTZ Helmholtz Institut Main

- Including:
 - Pionic two-body decay branching ratios
 - E906 momentum resolution

Known nuclei cannot produce a signal in the area of interest of E906

Simulations of energetic Ξ^-+^9Be nuclear reactions

 Nuclear reactions simulated with GiBUU

- Total probability: both graphs folded
- Resulting production probability of $P(_{A}^{3}H+_{A}^{4}H) = 1.6 \cdot 10^{-6}$
- Two orders of magnitude too low to match experimental observation

Simulations using GEANT4 Possible cases

- Decay in flight
- Stopped in target
- Nuclear reactions

Can ${}^{4}_{\Lambda\Lambda}$ n solve the puzzle?

P. Pile, Production of hypernuclei at the AGS, talk given at VIII International Conference on Hypernuclear and Strange, Particle Physics (HYP2003).

Can ${}^{4}_{\Lambda\Lambda}$ n solve the puzzle?

HIM

Decay of $n_{\Lambda\Lambda}$ would yield pion momenta in the observed region (114,133) MeV/c

Can ${}^{4}_{\Lambda\Lambda}$ n solve the puzzle?

HIM HELMHOLTZ Helmboltz Institut Main:

Can ${}^4_{\Lambda\Lambda}$ n solve the puzzle?

HIM

- Relative signal strength in area of interest
- Yellow band marks experimental value of E906
- For branching ratio of 50%
- Good agreement found for $\frac{4}{\Lambda\Lambda}$ n binding energies between 1.5 4 MeV

- $^{4}_{\Lambda\Lambda}$ n may be bound
 - Calculation still rather schematic

J.-M. Richard, Q. Wang, and Q. Zhao, Phys. Rev. C 91, 014003 (2015)

- $^{4}_{\Lambda\Lambda}$ n not bound
 - Calculation using pionless effective field theory
 - "Far from being bound"

L. Contessi, M. Schäfer, N. Barnea, A. Gal, J. Mareš, The onset of $\Lambda\Lambda$ hypernuclear binding, arXiv:1905.06775 [nucl-th]

- Decays of $\frac{4}{\Lambda\Lambda}$ n could indeed solve the E906 puzzle
- Present work should not be considered as a direct proof
- Most consistent explanation at the moment
- Experimentally $\frac{4}{30}$ n challenging to detect
 - Current J-PARC E07 emulsion experiment
 - Newly developed "vertex picker" scanning system
- Further discussions and experimental activities needed to solve the E906 puzzle

Thank you for your attention.

Table 2

Probability per produced Ξ^- for different S = -2 channels by nuclear Ξ^-+^9 Be reactions and by stopped Ξ^- hyperons. Here, SH (DH) stands for single (double) hypernucleus, respectively. In case of the stopped Ξ^- process a capture × conversion probability for producing excited $\Lambda\Lambda$ nuclear systems of 5% was taken into account. The probabilities in the last 5 columns are multiplied by 10⁴.

process	probability [%]	model	Λ+Λ	Λ+SH	SH+SH	DH	$^{3}_{\Lambda}H^{+4}_{\Lambda}H$
Ξ ⁻⁺⁹ Be	2.83	GiBUU	37.2	20.9	0.070	3.23	0.016
stopped Ξ ⁻	4.65 × 0.05	SMM ¹⁰ Li*	0.525	6.365	6.659	9.699	0

Table 1

Accessible decay channels with twin-hypernuclei (upper rows) or $\Lambda\Lambda$ -hypernuclei (lower rows) of an excited ${}^{10}_{\Lambda\Lambda}$ Li* hyperfragment which was formed after capture of a stopped Ξ^- by a ⁹Be nucleus. The pion momenta and the branching ratios are given for two-body π^- decays. The neutral nucleus ${}^{4}_{\Lambda\Lambda}$ n has not been observed yet and its stability is controversial [17,29]. Also the ${}^{3}_{\Lambda}$ n [3] needs further confirmation. Both hypernuclei are not included in the production probability calculations shown in Fig. 1 and column 7.

decay channels		π^- decay momenta (MeV/c)		two-body π^- branching ratios		production probability			
						no neutral	only $^3_\Lambda n$	only $^{4}_{\Lambda\Lambda}$ n	$^{3}_{\Lambda}n+ {}^{4}_{\Lambda\Lambda}n$
$^{3}_{\Lambda}n \rightarrow {}^{3}H+\pi^{-}$	$^{3}_{\Lambda}H \rightarrow {}^{3}He+\pi^{-}$	119	114	0.25	0.249	-	0.0002	-	0.0002
$^{3}_{\Lambda}n \rightarrow {}^{3}H+\pi^{-}$	${}^{5}_{\Lambda}\text{He} \rightarrow {}^{4}\text{He+p+}\pi^{-}$	119	99	0.25	0.17	-	0.0121	-	0.0120
$^{3}_{\Lambda}n \rightarrow {}^{3}H+\pi^{-}$	$^{6}_{\Lambda}$ He $\rightarrow {}^{6}$ Li+ π^{-}	119	108	0.25	0	-	0.0012	-	0.0011
$^{3}_{\Lambda}n \rightarrow {}^{3}H+\pi^{-}$	$^{7}_{\Lambda}\text{Li} \rightarrow ^{7}\text{Be+}\pi^{-}$	119	108	0.25	0.24	-	0.2421	-	0.2380
$^{3}_{\Lambda}H \rightarrow {}^{3}He+\pi^{-}$	$^{3}_{\Lambda}H \rightarrow {}^{3}He+\pi^{-}$	114	114	0.249	0.249	0.0001	0.0001	0.0001	0.0001
$^{3}_{\Lambda}H \rightarrow {}^{3}He+\pi^{-}$	${}^{5}_{\Lambda}\text{He} \rightarrow {}^{4}\text{He+p+}\pi^{-}$	114	99	0.249	0.17	0.0001	0.0001	0.0001	0.0001
$^{3}_{\Lambda}H \rightarrow {}^{3}He+\pi^{-}$	$^{6}_{\Lambda}$ He $\rightarrow {}^{6}$ Li+ π^{-}	114	108	0.249	0	0.0053	0.0039	0.0052	0.0039
$^{3}_{\Lambda}\text{H} \rightarrow {}^{3}\text{He}+\pi^{-}$	$^{7}_{\Lambda}$ He \rightarrow 7 Li+ π^{-}	114	115	0.249	0.10	0.1112	0.0824	0.1086	0.0806
$^{4}_{\Lambda}H \rightarrow {}^{4}He+\pi^{-}$	${}^{5}_{\Lambda}\text{He} \rightarrow {}^{4}\text{He+p+}\pi^{-}$	133	99	0.51	0.17	0.0716	0.0533	0.0701	0.0524
$^{4}_{\Lambda}\text{H} \rightarrow {}^{4}\text{He}{+}\pi^{-}$	$^{6}_{\Lambda}$ He $\rightarrow {}^{6}$ Li+ π^{-}	133	108	0.51	0	0.0981	0.0727	0.0960	0.0716
${}_{\Lambda\Lambda}{}^4n \rightarrow {}_{\Lambda}{}^4H^+\pi^-$	$^{4}_{\Lambda}\text{H} \rightarrow {}^{4}\text{He}+\pi^{-}$	118	133	0.25	0.51	-	-	0.0227	0.0170
${}_{\Lambda\Lambda}{}^{4}H \rightarrow {}_{\Lambda}{}^{4}He+\pi^{-}$	$^{4}_{\Lambda}$ He \rightarrow 4 Li+ π^{-}	117	98	0.25	0.19	0.0087	0.0066	0.0085	0.0063
${}_{\Lambda\Lambda}^{5}H \rightarrow {}_{\Lambda}^{5}He+\pi^{-}$	$^{5}_{\Lambda}$ He \rightarrow ⁴ He+p+ π^{-}	134	99	0.20	0.17	0.0209	0.0159	0.0205	0.0153
${}_{\Lambda\Lambda}^{6}He \rightarrow {}_{\Lambda}^{5}He+p+\pi^{-}$	$^{5}_{\Lambda}$ He \rightarrow 4 He+p+ π^{-}	101	99	0.17	0.17	0.0234	0.0174	0.0229	0.0171
$^{7}_{\Lambda\Lambda}$ He $\rightarrow ^{7}_{\Lambda}$ Li+ π^{-}	$^{7}_{\Lambda}$ Li \rightarrow $^{7}Be+\pi^{-}$	109	108	0.14	0.24	0.1022	0.0759	0.1002	0.0747
${}_{\Lambda\Lambda}^{8}\text{He} \rightarrow {}_{\Lambda}^{8}\text{Li}+\pi^{-}$	$^{8}_{\Lambda}$ Li \rightarrow $^{8}Be+\pi^{-}$	116	124	0.13	0.027	0.1005	0.0745	0.0983	0.0733
			120		0.148				
$^{9}_{\Lambda\Lambda}$ He $\rightarrow ^{9}_{\Lambda}$ Li+ π^{-}	${}^{9}_{\Lambda}\text{Li} \rightarrow {}^{9}\text{Be+}\pi^{-}$	117	121	0.11	0.1	0.0229	0.0130	0.0224	0.0167
${}_{\Lambda\Lambda}^{7}\text{Li} \rightarrow {}_{\Lambda}^{7}\text{Be+}\pi^{-}$	$^{7}_{\Lambda}\text{Be} \rightarrow ^{7}\text{B+}\pi^{-}$	101	96	0.14	0	0.0002	0.0001	0.0002	0.0001
${}_{\Lambda\Lambda}{}^{8}Li \rightarrow {}_{\Lambda}{}^{8}Be+\pi^{-}$	$^{8}_{\Lambda}$ Be $\rightarrow {}^{8}$ B+ π^{-}	109	97	0.13	0	0.0369	0.0273	0.0359	0.0269
$^{9}_{\Lambda\Lambda}Li \rightarrow ^{9}_{\Lambda}Be+\pi^{-}$	${}^{9}_{\Lambda}\text{Be} \rightarrow {}^{9}\text{B+}\pi^{-}$	123	97	0.11	0.14	0.1012	0.0753	0.0990	0.0748