

High precision X-ray spectroscopy of E⁻ hyperatoms at PANDA

Marcell Steinen

Helmholtz-Institut Mainz

Mündliche Doktorprüfung, 20.5.2020

- Neutron stars and hyperons
- Strangeness nuclear physics at PANDA
- Ξ^{-208} Pb hyperatom experiment at $\overline{P}ANDA$

Neutron stars

Extremely dense stellar objects $- M_{NS} \sim 1-2 M_{\odot}$ $- R \sim 12 \text{ km}$ $\rightarrow \rho_{Core} > \rho_{nuc}$

Giant nucleus

Evolution of neutron stars described by Equation of state (EOS) $P = P(\rho,T)$

Composition of neutron stars

Comparison of various compositions

Demorest, R. et al. Nature 467 (2010) Antoniadis, J. et al. Science 340.6131 (2013) Yagi, K. et al. Phys Rep. 681 (2017)

5

Marcell Steinen

Neutron stars

Abbott, B. P. et al. Astr. Phys. J Lett. 848 (2017)

Marcell Steinen 2

Hyperon puzzle

Interacting Fermi-gas $\rho_{\Lambda} \approx 2 - 3\rho_{nuc}$

Bombaci, I JPS Conf. Proc. 17 (2017) Antoniadis, J. et al. Science 340.6131 (2013) Negreiros, R. et al. Astrophys. J. 863 (2018) 104

Marcell Steinen

Ξ -nucleus interaction

8

Strangeness nuclear physics at PANDA

Strangeness nuclear physics at PANDA

Marcell Steinen

PANDA at FAIR

https://www.gsi.de/forschungbeschleuniger/fair/bau_von_fair/bilder_und_videos.htm

Marcell Steinen

PANDA as hyperon factory

11

Marcell Steinen

Strangeness nuclear physics

correlations at threshold

Sanchez Lorente et al. Physics Letters B 749 (2015)

Pochodzalla et al. Nuclear Physics A 954 (2016)

Marcell Steinen

PANDA schedule

PANDA detector

Hyperatom/nuclear setup will be installed here

- Fixed target setup
- Target + forward spectrometer

• B≤2T

• Solid angle $\sim 4\pi$

Hyperatom/nuclear setup

- Dedicated two-step target system
- PANGEA

Production of hyperatoms/nuclei

- Primary target
 - Production of Ξ^{-} $\overline{p} A \rightarrow \Xi^{-} \overline{\Xi}^{+/0} + A'$
 - K⁺ from $\overline{\Xi}^{+/0}$ decay as tag
- Secondary target
 - Stopping of Ξ^-
 - Atomic cascade of Ξ^-
 - Nuclear conversion $\Xi^{-} + p \rightarrow \Lambda\Lambda + 28 \text{ MeV}$
- PANGEA
 - X-ray spectroscopy of heavy Ξ⁻ hyperatoms (0.1 - 1 MeV)
 - γ spectroscopy of
 light ΛΛ hypernuclei (0.1 10 MeV)

Target system

PANda GErmanium Array

- Collaboration of PANDA (HIM) with NuSTAR (DEGAS)
- . 20 triple HPGe detectors
- Electro-mechanical cooling (~LN2 temp.)
- Full energy efficiency $\sim 5 \% @ {}^{60}Co$
- BGO veto

Cold head/

Cooler

Fully integrated design

DCS

High hadronic background at PANDA

Crystals

Support electronics

BGO veto

3 x HV/Preamp

18

20.5.2020

12 cm

HPGe irradiation test

- Irradiation test at COSY using single crystal prototype
- 5.5 days at COSY

 → 94 days at PANDA

Results

- Performance influenced by experimental conditions
- Irradiation worsens resolution
 - Pulse shape analysis allows partial recovery
- Annealing recovers initial crystal performance
 - → Detector withstands irradiation
- Additional test at TRIGA planned

PANGEA – Prototype

Courtesy of I. Kojouharov

Ξ⁻ hyperatoms at PANDA

Ξ^- hyperatoms at $\overline{P}ANDA$

Ξ^- hyperatoms

- Exotic atoms with heavy negatively charged particle
- $m_{red,\Xi} \approx 2570 m_{red,e}$
- Shrinking of states: $< r > \propto \frac{1}{m_{red}}$
 - $E_{n+1→n} ∝ Z^2 m_{red}$ → Germanium detectors
 - Probing of nuclear potential in periphery
 - → Measurement of complex V_{Ξ} in neutron-rich matter

Calculations performed with code based on Batty, C. J. et al. Phys. Rev. C 59 (1999)

Observables

 $n_{0,\Xi Pb} = 9$

Ξ--²⁰⁸Pb

Batty, C. J. et al. Phys. Rev. C 59 (1999)

25

Possible secondary targets

- Criteria:
 - High $\Delta E_{n_0}^{nuc}$
 - Moderate Y_{γ_2}

- Observables influenced by
 - Ξ^{-} nucleus interaction
 - Ξ^{-} wave form (QED)
 - Nucleon distribution

Calculations performed with code based on Batty, C. J. et al. Phys. Rev. C 59 (1999)

Systematic uncertainties

Centelles et al. Phys.Rev.Lett. 102 (2009) 122502

- Neutron skin Δ_{np} in ²⁰⁸Pb well-known
- Present uncertainty of $\Delta_{np} \rightarrow$ Systematic uncertainty in observables
- $\delta(\Delta E_{(10,9)\to(9,8)}^{nuc})_{sys} \sim \pm 100 \text{ eV}$

Full simulation in PandaRoot

28

Estimation of V_{Ξ}

Complementary experiments

Take-home message

- Strangeness nuclear physics at PANDA can help to understand the inner structure of neutron stars.
- Development of PANGEA and the target system is on schedule - promising results from prototypes.
- X-ray spectroscopy of heavy Ξ⁻ hyperatoms at PANDA is unique and complementary to J-PARC E03/07.

