

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

PANGEA – The PANda GErmanium Array

Marcell Steinen

Helmholtz-Institut Mainz

REIMEI Seminar

23.09.2020

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 824093.

Triple Detectors

Common development with DEGAS (NuStar@FAIR)
 Details on the detectors by Ivan next week!

Integration into PANDA

Detector control system

Digital DAQ system

PANGEA

- Study of Ξ⁻ hyperatoms and ΛΛ hypernuclei
 Energy range < 1 (10) MeV
- PANGEA integrated into PANDA
 - Limited space
 - Strong magnetic field
 - High hadronic background (≤ 4 MHz p̄C)

Integration - Optimization

- Fixed target experiment

 Background peaking forward
- Hyperatoms/-nuclei at rest: Isotropic distribution of γ
 Shifted spherical geometry to even out background (R=40 cm, O = 20 cm)
- Placement options:

www.hi-mainz.de

- Tilted detectors (18 x 3)
- Straight detectors (20 x 3)

oltz-Institut Mainz

Integration - Efficiency

Absorption in target system included!

HELMHOLTZ

Helmholtz-Institut Mainz

Mechanical Integration

Mechanical Integration

- Stability tested in simulations
- Flexible setup allows modifications of geometries

Transformation of setup

- Quick transformation of setups
 required
- Modules simplify accessibility and maintainability of the germanium detectors

Process	Time requirement
Move PANDA to maintenance position	1 week
Remove EMC endcap	1-2 weeks
Detach STT and remove MVD and beam pipe (central frame)	2-3 weeks
Install target system and beam pipe (central frame), reattach STT	1 week
Build up PANGEA	1 week
Move and calibrate hyperatomic/hypernuclear setup into target spectrometer	1 week
Move $\overline{P}ANDA$ to beam position	1 week
Cool down magnet, pumping, final calibration and commissioning	2 weeks
Total	10-12 weeks

DCS - PANDA

- PANDA uses EPICS
- Distributed control system

DCS - PANGEA

- DCS subnet for PANGEA
- IOC for each individual triple detector

DCS - PANGEA detectors

- DCS Board
 - Control and monitoring
 - Prototyping with BBB
 - Common FAIR development of radiation hard board (RISC-V under investigation)

DAQ of PANGEA

- Digital readout
- EMC digitizers suitable:
 - 14 bit
 - 80 MSa/s
 - 64 channels
 - → single module for full PANGEA
 - Adjustable firmware
 - → Energy extraction implementable in firmware

Pawel Marciniewski, TWEPP-2017

Moving window deconvolution

- Original signal with exp. Decay $f(t) = \begin{cases} A \exp(-\frac{t}{\tau}) & t \ge \\ 0 & t < \end{cases}$
- Deconvolution

$$A[n] = x[n] + \frac{1}{\tau} \sum_{k=-\infty}^{n-1} x[k]$$

= $x[n] - \left(1 - \frac{1}{\tau}\right) x[n-1] + A[n-1]$

- Shortening of the signal (high rate) $_{MWD_M[n] = \nabla_M A[n]} = A[n] - A[n - M]$
- Low pass (trapezoidal) filter

$$MA_{L}[n] = \frac{1}{L} \sum_{k=n-M}^{n-1} MWD_{M}[k]$$

= $MA_{L}[n-1] + \frac{1}{L}(MWD_{M}[n] - MWD_{M}[n-L])$

Applicable in FPGA

Pulse shape analysis

- More information entangled in signal
- Digitization allows to analysis the full signal
 Study of the riging odge

- Recover effects of magnetic fields
- Recover radiation damage

nstitut Mainz

HPGe in Magnetic field

- Increased rise time by curling of charge carriers within the crystal
- Broadened and shifted Co-60 line

fADC: Struck SIS3300, 8 chan., 100 MSa/s, 12 bit

elmholtz-Institut Mainz

Rise time dependance

A. Sanchez Lorente et al., NIM A 573.3 (2007)

Rise time correction

Ξ--²⁰⁸Pb - Online calibration

Magnetic fields results

Correction allows recovery

A. Sanchez Lorente et al., NIM A 573.3 (2007)

Radiation damage

- Neutron irradiation:
 - Decrease of HPGe performance
 - Trapping of charge carriers (holes)

E. H. Seabury et al. 2013 IEEE Nuclear Science Symposium and Medical Imaging Conference (2013 NSS/MIC), Seoul, 2013,

PANGEA - radiation damage

- PANDA: crystals with up to 1*10¹⁰ n/cm² within experiment (180 days)
- Test beam @ COSY (FZ Jülich, Germany)
- E.-m.-cooled prototype with 1 EUROBALL crystal (n-Type)
 - Neutrons produced in p(2.78 GeV/c)+C: similar to p
 FANDA
 - − 5.6*10¹⁰ n/cm² in 5.5 days
 → 94 days of PANDA

γ Spectrum after irradiation

AGATA – radiation damage

- Segmented detectors
- Extract interaction position within the crystal

After correction

B. Bruyneel et al. Eur. Phys. J. A (2013) 49: 61

Pulse shape analysis

25

- EUROBALL crystals not segmented!
- PSA allows to extract interaction depth
 - Information in rising edge
 - Rise time not unique
 - Current signal has unique r dependence
 → T(I_{max}) –T(q₁₀)
- fADC: CAEN v1724, 8 channel, 100 MSa/s, 14 bit

www.hi-mainz.de

elmholtz-Institut Mainz

Data analysis

HELMHOLTZ Helmholtz-Institut Mainz

HIN

Application of the correction

Results

TRIGA – new tests

- More systematic test required
- TRIGA fission reactor at Mainz university
 - Up to 100 kW
 - High flux of neutrons
 - Fast neutron spectrum poorly known
- Pre-test with scintillating detector performed in january
 - Analysis ongoing

elmholtz-Institut Mainz

Summary

- PANGEA shares its detectors with DEGAS
- PANGEA designed to perform within PANDA spectrometer
- Distributed DCS system using EPICS
- Digital PSA useful to recover from the effects of the magnetic field and radiation damage

