Hadron In Nucleus 2020 (HIN20) 8-10 March 2021 Yukawa Institute for Theoretical Physics, Kyoto University Strange nuclear systems at

- Motivation
- PANDA@FAIR
- > Heavy Ξ^- atoms

Josef Pochodzalla

STRONG 2::20

JGU Mainz & Helmholtz-Institut – Mainz – European Union

FAIR strongly interacting matter on all scales

P-Target

- Nuclear Structure & Astrophysics (rare isotope beams)
- QCD-Phase Diagram (HI beams 2 to 45 GeV/u)
- Fundamental Symmetries & Ultra-High EM Fields (anti-protons & highly stripped ions)

PANDA

HESR

- Hadron Physics (stored and cooled 15 GeV/c anti-protons)
- Dense Bulk Plasmas (ion beam bunch compression & petawatt-laser)
- Materials Science & Radiation Biology (ion & anti-proton beams)

The Holy Grail of QCD Matter

JGU

courtesy of Peter Senger and Norbert Herrmann

Neutron stars are Superstars super high density super strong magnetic fields super fast rotation super strong gravity in Matter

~10-7

 $\sim 10^{-4}$

0-10

~10 billion white dwarfs

~1 million black holes

100 million

neutron stars

2GM

in our galaxy ~300 billion stars

hyp<u>eratoms</u>

hypernuclei

A Ditakike

(anti)hyperon scattering

strangeness nuclear physics Rotating stars

nuclear structure EOS from Standard Model

compressed

EOS from Standard Model +strong field GRAVITY

Sedrakian, Weber, Li, Phys. Rev. D 102, 041301(R) (2020)

Li, Sedrakian, Weber, Phys. Lett. B 810, 135812 (2020)

 n/n_0

Although the hadronic EOS is related to many other branches in nuclear or hadronic physics, the focus on the strangeness aspect guarantees specific, unique and important contributions by PANDA.

PANDA @ FAIR

^{JGI} High Energy Storage Ring HESR

- Circumference 575 m
- Momentum 1.5 15 GeV/c
- Stochastic cooling
- 10¹¹ antiprotons stored
- Luminosity up to 2.10³² cm⁻²s⁻¹
- $\Delta p/p \le 2 \cdot 10^{-4}$

JGU The PANDA Detector

PANDA – a Factory for strange and charmed YY-Pairs

Momentum (GeV/c)	Reaction	σ (μ b)	Efficiency (%)	Decay	Rate PHASE1 10 ³¹ cm ⁻² s ⁻¹
1.64	$\bar{p}p \rightarrow \bar{\Lambda}\Lambda$	64	15.7	∧→рπ⁻	44
1.77	$\bar{p}p \rightarrow \bar{\Sigma}^0 \Lambda$	10.9	5.3	$\Sigma^0 \rightarrow \Lambda \gamma$	2.4
6.0	$\bar{p}p \rightarrow \bar{\Sigma}^0 \Lambda$	20.0	6.1	$\Sigma^0 \rightarrow \Lambda \gamma$	5.0
4.6	pp→Ξ+Ξ-	1.0	8.2	$\Xi^- \rightarrow \Lambda \pi^-$	0.3

Physics at PANDA

JGU PANDA members

UP Marche Ancona U Basel **IHEP Beijing U** Bochum Abant Izzet Baysal U Golkoy, Bolu U Bonn U Brescia **IFIN-HH Bucharest** AGH UST Cracow **IFJ PAN Cracow** JU Cracow Cracow UT FAIR Darmstadt **GSI** Darmstadt JINR Dubna U Erlangen NWU Evanston **U** Frankfurt LNF-INFN Frascati

U & INFN Genova

U Gießen Giresun U **U** Glasgow **KVI** Groningen Gauhati U, Guwahati USTC Hefei **URZ Heidelberg** Doğuş U, İstanbul Okan U, Istanbul FZ Jülich IMP Lanzhou **INFN** Legnaro Lund U HI Mainz U Mainz **RINP Minsk** ITEP Moscow MPEI Moscow U Münster **BINP Novosibirsk** Novosibirsk State U

IPN Orsay U Wisconsin, Oshkosh U & INFN Pavia PNPI St. Petersburg Wet Boh. U. Pilzen Charles U, Prague Czech TU, Prague **IHEP** Protvino Irfu Saclay KTH Stockholm Stockholm U SUT, Nakhon Ratchasima SVNIT Surat-Gujarat S Gujarat U, Surat-Gujarat FSU Tallahassee U & INFN Torino Politecnico di Torino **U** Uppsala SMI Vienna NCBJ Warsaw **U** York

۲

Progress @ FAIR

JGIU Strangeness Nuclear Physics

= Strangeness in cold nuclei

Recent Progress in Strangeness and Charm Hadronic and Nuclear Physics Edts. A. Gal and JP Nucl. Phys. A **954**, 1–2 (2016)

Theoretical considerations for HI: PRC **86**, 011601(R) (2012) PRC **88**, 054605 (2013) PLB **742**, 7 (2015) Eur. Phys. J. **52**, 242 (2016) PRC **94**, 054615 (2016) PRC **95**, 014902 (2017) JP PLB **669**, 306 (2008) Sanchez *et al.*, PLB 749, 421 (2015)

J-PARC E07

J-PARC E03 PANDA ALICE

PANDA

E-Hyperatoms Marcell Steinen, PhD Thesis

E03 and E07 @ J-PARC

► E07

- Beam exposure has successfully been performed for all emulsion stacks in 2016/2017
- auto-scanning has started
- ground state masses for AA-hypernuclei can be determined
- > Ξ^- Ag and Ξ^- Br X-rays

► E03

> Ξ⁻-Fe X-rays (medium mass targets) running right now at J-PARC

^{JG}^{JG} Ξ⁻ atom X-ray spectroscopy

- > Shift of "lowest" atomic sensitive to Ξ_{-} -nucleus interaction
- Interpretation requires knowledge on
 - the neutron and proton distribution
 - the isospin dependence of the baryon-baryon force

[」]Isospin in Ξ⁻ atoms

It is important to measure both, light nuclei with I=0 (N=Z) and heavy nuclei (neutron skin)

Helmholtz-Institut Mainz

Goal at PANDA: study well known double-magic nuclei

M. Centelles, X. Roca-Maza, X. Viñas, and M. Warda Phys. Rev. Lett. 102, 122502

Sensitivity to ²⁰⁸Pb structure

changing thickness of neutron skin artificially in calculation

^{JG|U} Strange Systems at PANDA

X⁻ production $\overline{p}N \rightarrow X^- + X$

rescattering in primary target nucleus

> deceleration in secondary target

> > capture of X

atomic cascade of Ξ^-

 $\Xi^{-}p\boxtimes \Lambda\Lambda$ conversion fragmentation \rightarrow excited $\Lambda\Lambda$ -nucleus

 γ -decay of $\Lambda\Lambda$ hypernuclei

weak pionic decay

Primary Target

► Task: maximize slow Ξ⁻ production

Target material: C filament 5μm

- production cross section
- slow down process
- beam losses...
- ultra high vacuum
- magnetic field
- radiation hardness
 e.g. passive position control

PANDA Setup for Hyperatoms

Shape of absorber optimized by GiBBU+GEANT4 simulations

1000

- very thin primary target
- primary and secondary target separated
- Sec. Target in or ouside of vacuum
- relative thin secondary target
 - \Rightarrow moderate X-ray absorption
 - \Rightarrow detection of cacades possible
 - \Rightarrow heavy targets possible
- ▶ tracking secondary particles also possible ⇒ reduced background

Count rate: \Box 100 double hypernuclei \Rightarrow ideal as first step

- Full GEANT simulation of setup
- Background, pile-up,...

Take-home message

Strangeness nuclear physics is embedded in the quest to determine the EOS of dense stellar systems

- Hypernuclei and hyperatoms are femtolaboratories for YⁿN^m interaction
- After 60 years still many puzzles: hypertriton, existence of neutral hypernuclei nnΛ, nnΛΛ, ...hyperon puzzle of NS...
- Several complementing studies at different laboratories using different techniques
 - Coming generation of experiments focus on precision studies

Thank you for your attention