

JOHANNES GUTENBERG **UNIVERSITÄT** MAINZ

Heavy E⁻hyperatoms at **PANDA**

Marcell Steinen for the PANDA collaboration

Helmholtz-Institut Mainz

PANIC 2021, Lisbon, 05/09/2021

Description of neutron stars

APR ALF5 Neutron stars AP3 AP4 SLy described by EOS 2.5 SGI SGI-YBZ6-SAA3 SV SkI4 SkI4-YBZ6-SAA3 LS220 Shen ENG [⁰ M] M MPA1 MS1 EOS must reach MS1b WFF1 WFF2 2 m_{sun} threshold DBHF⁽²⁾(A) NIY5KK GA-FSU2.1 GA-FSU2.1-180 G4 H4 0.5 GCR Models vary in MPa MPaH SQM1 composition and 0 SOM2 10 8 12 14 SQM3 interaction R [km]

Demorest, R. et al. Nature 467 (2010) Antoniadis, J. et al. Science 340.6131 (2013) Yagi, K. et al. Phys Rep. 681 (2017)

Hyperon puzzle

- Hyperons offer a new degree of freedom at 2*ρ_{nuc}
- Softening of EOS
- EOS with hyperons tuneable to be compatible with 2 m_{sun}

Bombaci, I JPS Conf. Proc. 17 (2017) Antoniadis, J. et al. Science 340.6131 (2013) Negreiros, R. et al. Astrophys. J. 863 (2018) 104

PANDA as hyperon factory

@ 2 MHz pp

Panda Collaboration, Physics Performance Report for PANDA

HIM HELMHOLTZ Helmholtz-Institut Mainz

~100 /s

 $\Xi^{-}\overline{\Xi}^{+}$

PANDA at FAIR

https://www.gsi.de/forschungbeschleuniger/fair/bau_von_fair/bilder_und_videos.htm

PANDA detector

Calorimeter forward endcap

- Fixed target setup
- Target + forward spectrometer
- Solid angle ~4π •

Slice of barrel calorimeter

Strangeness nuclear physics at PANDA

Phase 1 (~2026)

Phase 2 (2027+)

Pochodzalla et al. Nuclear Physics A 954 (2016)

HIM

HELMHOLTZ Helmholtz-Institut Mainz

Sanchez Lorente et al. Physics Letters B 749 (2015)

www.hi-mainz.de

Hyperatom/nuclear setup

- Dedicated two-step target system
- PANda GErmanium Array

Hyperatom/nuclear setup

- Radiation hardness of PANGEA tested
- First detectors constructed in collaboration with NUSTAR

- Primary target constructed and tested
- Secondary target designed and shape optimized for maximum efficiency

Production of hyperatoms

Primary target

- Production of Ξ^{-} $\overline{p} A \rightarrow \Xi^{-} \overline{\Xi}^{+/0} + A'$
- K⁺ from $\overline{\Xi}^{+/0}$ decay as tag
- Secondary target
 - Stopping of Ξ^- before decay
 - Atomic cascade of Ξ^-
 - Nuclear conversion $\Xi^{-} + p \rightarrow \Lambda\Lambda + 28 \text{ MeV}$
- PANGEA
 - X-ray spectroscopy of heavy Ξ⁻ hyperatoms (0.1 - 1 MeV)
 - γ spectroscopy of
 light ΛΛ hypernuclei (0.1 10 MeV)

Imholtz-Institut Mainz

X-ray spectroscopy of Ξ^- hyperatoms

HELMHOLTZ

elmholtz-Institut Mainz

Measurement of energy shift and width

-> complex V_{Ξ} in neutron-rich nuclear periphery

Succesful method for π^- , K⁻, \overline{p} , Σ^- atoms

Observables

Observables calculated for various possible hyperatoms

Calculations performed with code by Eli Friedman based on Batty, C. J. et al. Phys. Rev. C 59 (1999)

Observables of Ξ^- - ²⁰⁸Pb

Calculations performed with code by Eli Friedman based on Batty, C. J. et al. Phys. Rev. C 59 (1999)

HELMHOLTZ

Helmholtz-Institut Mainz

Systematic uncertainties

- Neutron skin Δ_{np} in ²⁰⁸Pb well-known
- Present uncertainty of $\Delta_{np} \rightarrow$ Systematic uncertainty in observables
- $\delta \left(\Delta E^{nuc}_{(10,9) \rightarrow (9,8)} \right)_{sys} \sim \pm 150 \text{ eV}$

HELMHOLTZ

Helmholtz-Institut Mainz

Full simulation in PandaRoot

Estimation of V_{Ξ}

 $\delta(\text{Re}(V_{\Xi}))_{\text{stat}} \approx \delta(\text{Im}(V_{\Xi}))_{\text{stat}} \approx 1 \text{ MeV}$

Complementary experiments

H. Ekawa et al. Prog. Theor. Exp. Phys. 2019, 2 (2019)

HELMHOLTZ

Helmholtz-Institut Mainz

Details on J-PARC hyperatom activities: Talk of T. O. Yamamoto (wednesday)

Take-home message

- Strangeness nuclear physics at PANDA can help to understand the inner structure of neutron stars.
- X-ray spectroscopy of heavy Ξ⁻ hyperatoms at PANDA is unique and complementary to J-PARC E03/07.
- Work on the simulations is progressing (background suppression, K⁺ efficiency, more channels?)
- Development of hardware is ongoing

