

Antihyperons in nuclear matter at PANDA Phase One

Falk Schupp

Helmholtz Institute Mainz

SMuK 2021

Strangeness nuclear physics at PANDA

Sanchez Lorente et al. Physics Letters B 749 (2015) Pochodzalla et al. Nuclear Physics A 954 (2016)

(anti-)hyperon potential in cold baryonic matter

- Hyperon pair production in nuclei
- Observed hyperon momenta depend on nuclear potential
 - seperate potential for hyperon and antihyperon
 - Different observable momenta
- p, p
 nuclear potential is known to be different

PANDA@FAIR and current construction work

https://www.gsi.de/forschungbeschleuniger/fair/bau_von_fair/bilder_und_videos.htm

- Start of antiproton production
- HESR with limited luminosity

Eur. Phys. J. A 57, 184 (2021)

- Start of antiproton production
- HESR with limited luminosity
- Reduced PANDA detector setup

Eur. Phys. J. A 57, 184 (2021)

www.hi-mainz.de

- Start of antiproton production
- HESR with limited luminosity
- Reduced PANDA detector setup
- Focus on reactions with:
 - large expected cross sections
 - good signal-to-background ratios
 - Small final state multiplicities

Eur. Phys. J. A 57, 184 (2021)

- Start of antiproton production
- HESR with limited luminosity
- Reduced PANDA detector setup
- Focus on reactions with:
 - large expected cross sections
 - good signal-to-background ratios
 - Small final state multiplicities

 $\succ \overline{p}A \longrightarrow \Lambda \overline{\Lambda} + X$

Eur. Phys. J. A 57, 184 (2021)

pp vs pA collisions - GiBUU

- Two-body interaction $p\overline{p} \rightarrow \Lambda \overline{\Lambda}$
 - Transverse momenta trivial

•
$$P_{T,\Lambda} = -P_{T,\overline{\Lambda}}$$

- pA system more complex
 - Fermi motion
 - Many body interactions

pp vs pA collisions - GiBUU

Antihyperon potential dependence

03.09.2021

elmholtz-Institut Mainz

03.09.2021

$$\begin{aligned} \alpha_T &= \frac{p_T(Y) - p_T(\overline{Y})}{p_T(Y) + p_T(\overline{Y})} \\ \alpha_L &= \frac{p_L(Y) - p_L(\overline{Y})}{p_L(Y) + p_L(\overline{Y})} \end{aligned}$$

• $p\overline{p} \rightarrow \Lambda \overline{\Lambda} \Rightarrow no asymmetry$

HIM HELMHOLTZ Helmholtz-Institut Mainz

03.09.2021

$$\alpha_T = \frac{p_T(Y) - p_T(\overline{Y})}{p_T(Y) + p_T(\overline{Y})}$$
$$\alpha_L = \frac{p_L(Y) - p_L(\overline{Y})}{p_L(Y) + p_L(\overline{Y})}$$

- $p\overline{p} \rightarrow \Lambda\overline{\Lambda} \Rightarrow no asymmetry$
- $\Lambda\overline{\Lambda}$ pair momentum assymmetry calculated per event

HIM HELMHOLTZ Helmholtz-Institut Mainz

$$\alpha_T = \frac{p_T(Y) - p_T(\overline{Y})}{p_T(Y) + p_T(\overline{Y})}$$
$$\alpha_L = \frac{p_L(Y) - p_L(\overline{Y})}{p_L(Y) + p_L(\overline{Y})}$$

- $\Lambda\overline{\Lambda}$ pair momentum assymmetry calculated per event
- $p\overline{p} \rightarrow \Lambda \overline{\Lambda} \Rightarrow no asymmetry$
- GiBUU data sensitiv to
 - momentum assymmetry
 - nuclear potential

elmholtz-Institut Mainz

- Recently started with analysis of PANDA detector performance
- Using PandaRoot for simulations

- PANDA Phase One setup
- GiBUU as event generator for MC studies

1.64 GeV/c ²⁰Ne(p̄, ΛΛ̄) GiBUU rel. 2017

1.64 GeV/c ²⁰Ne(p, ΛΛ) GiBUU rel. 2017

1.64 GeV/c ²⁰Ne(p̄, ΛΛ̄) GiBUU rel. 2017

HIMster2 simulations

Momentum GeV/c	Potentials	Simulated events per potential	YY for potential 0.5	PANDA runtime*	Simulation time req. on HIMster2
1,52	5	1,35 *10 ⁸	$37628 \wedge \overline{\Lambda}$	9,3 h	1,5 month
			4002 $\Sigma^0 \overline{\Lambda} + \overline{\Sigma}^0 \Lambda$		
			6724 $\Sigma^{+/-}\overline{\Lambda}$ + c.c.		
1,64	7	1,63 *10 ⁸	82983 $\Lambda \overline{\Lambda}$	11,2 h	2 month
			17888 $\Sigma^0 \overline{\Lambda} + \overline{\Sigma}^0 \Lambda$		
			31903 $\Sigma^{+/-}\overline{\Lambda}$ + c.c.		
2,90	3	8,13 *10 ⁸	13635 $\Xi^-\overline{\Xi}^+$	112 h = 4,7 d	5 month

* With 10% reco efficiency, $\Lambda\overline{\Lambda}$ charged decay prob. and HESR luminosity taken into account

• All simulations done on HIMster2 (320 nodes: Cores: 10240)

- Part of Mogon2 supercomputer
 - Johannes Gutenberg-University Mainz

Summary/Outlook

 Unique measurement of antihyperon potential in nuclei during Phase One of PANDA

- GiBUU simulations were completed for several hyperon pairs in for pA reactions
- Started with PandaRoot studies of GiBUU events

- Additional channels to study: $\Sigma^0\overline{\Lambda}$, $\Xi\overline{\Xi}$
 - Feasibility in Panda Phase One?

Thank you for your attention!

BACKUP: Hyperon absorption in nuclei

- Antihyperon strongly absorbed
 - Mainly periphery contributes
- Many simulated events will pass nuclei without reaction

