Superheavy SHE Chemistry


Direct detection of elusive thorium-229 isomer among "Physics World Top Ten Breakthroughs of the Year 2016"

The direct detection of the exotic isomeric state in thorium-229 at the LMU Munich, achieved in collaboration with our group, belongs to the IOP's "Physics World Top Ten Breakthroughs of the Year 2016" as identified according to their fundamental importance of research, significant advance in knowledge, strong connection between theory and experiment, and general interest to all physicists. The work lays a basis for next steps on the way to a potential future "nuclear clock" built upon the ground state transition of this isomeric state. Such a clock's precision might significantly surpass that of the best current timekeepers, the atomic clocks.

The direct detection of the exotic isomeric state in thorium-229 at the LMU Munich, achieved in collaboration with our group, belongs to the IOP's "Physics World Top Ten Breakthroughs of the Year 2016" as identified according to their fundamental importance of research, significant advance in knowledge, strong connection between theory and experiment, and general interest to all physicists. The work lays a basis for next steps on the way to a potential future "nuclear clock" built upon the ground state transition of this isomeric state. Such a clock's precision might significantly surpass that of the best current timekeepers, the atomic clocks.

 

The direct detection of the exotic isomeric state in thorium-229 at the LMU Munich, achieved in collaboration with our group, belongs to the IOP's "Physics World Top Ten Breakthroughs of the Year 2016" as identified according to their fundamental importance of research, significant advance in knowledge, strong connection between theory and experiment, and general interest to all physicists. The work lays a basis for next steps on the way to a potential future "nuclear clock" built upon the ground state transition of this isomeric state. Such a clock's precision might significantly surpass that of the best current timekeepers, the atomic clocks.